Normalized defining polynomial
\( x^{21} - 6 x^{20} - 37 x^{19} + 251 x^{18} + 486 x^{17} - 4101 x^{16} - 2503 x^{15} + 33963 x^{14} + 600 x^{13} - 155515 x^{12} + 45616 x^{11} + 397419 x^{10} - 191382 x^{9} - 530658 x^{8} + 335989 x^{7} + 293449 x^{6} - 253693 x^{5} - 5734 x^{4} + 47660 x^{3} - 14944 x^{2} + 1819 x - 79 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(234115784066285834308882767309928987624333=229^{7}\cdot 577^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $229, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{91} a^{19} + \frac{3}{7} a^{18} - \frac{33}{91} a^{17} + \frac{1}{91} a^{16} - \frac{17}{91} a^{15} + \frac{2}{7} a^{14} + \frac{6}{13} a^{13} - \frac{27}{91} a^{12} + \frac{8}{91} a^{11} - \frac{43}{91} a^{10} + \frac{1}{13} a^{9} + \frac{9}{91} a^{8} - \frac{31}{91} a^{7} + \frac{8}{91} a^{6} - \frac{33}{91} a^{5} + \frac{6}{13} a^{4} - \frac{8}{91} a^{3} - \frac{11}{91} a^{2} + \frac{3}{13} a - \frac{16}{91}$, $\frac{1}{905829385138595478196779689733733} a^{20} - \frac{1823821612589082681894073890229}{905829385138595478196779689733733} a^{19} - \frac{23208614430680792455558804923186}{905829385138595478196779689733733} a^{18} - \frac{353826130469171672067948610229517}{905829385138595478196779689733733} a^{17} - \frac{7856158675896547978587530982500}{905829385138595478196779689733733} a^{16} + \frac{83949170850192506202648723470427}{905829385138595478196779689733733} a^{15} - \frac{57131012533854256352235891431701}{129404197876942211170968527104819} a^{14} + \frac{220883297715244472413693667064560}{905829385138595478196779689733733} a^{13} - \frac{371206561109349206392755943171783}{905829385138595478196779689733733} a^{12} + \frac{61420634964023978886520469255412}{905829385138595478196779689733733} a^{11} - \frac{9301336814329372453144130410330}{129404197876942211170968527104819} a^{10} - \frac{28161489349768024101607140136491}{905829385138595478196779689733733} a^{9} - \frac{72178124273998061130113285930537}{905829385138595478196779689733733} a^{8} + \frac{411699968748636200494323103467589}{905829385138595478196779689733733} a^{7} + \frac{363252614451175326681680795634165}{905829385138595478196779689733733} a^{6} + \frac{2854094293888656879609996072050}{129404197876942211170968527104819} a^{5} + \frac{312965457421718685422769063274098}{905829385138595478196779689733733} a^{4} + \frac{17437103445977018335228735647858}{69679183472199652168983053056441} a^{3} + \frac{48559129147877909086201528027868}{129404197876942211170968527104819} a^{2} + \frac{305659786137768221551944205842109}{905829385138595478196779689733733} a + \frac{11892326137330872947773026665079}{129404197876942211170968527104819}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 108385002485000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times D_7$ (as 21T8):
| A solvable group of order 84 |
| The 15 conjugacy class representatives for $S_3\times D_7$ |
| Character table for $S_3\times D_7$ |
Intermediate fields
| 3.3.229.1, 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }{,}\,{\href{/LocalNumberField/2.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 229 | Data not computed | ||||||
| 577 | Data not computed | ||||||