Normalized defining polynomial
\( x^{21} - 609 x^{19} + 158949 x^{17} - 23218328 x^{15} - 350610 x^{14} + 2079406140 x^{13} + 142347660 x^{12} - 117590417217 x^{11} - 22704451770 x^{10} + 4167927010247 x^{9} + 1795715730900 x^{8} - 88767002725137 x^{7} - 72906058674540 x^{6} + 1032834108286134 x^{5} + 1409517134374440 x^{4} - 5168916513642035 x^{3} - 10218999224214690 x^{2} + 2797998936825036 x + 10374903606295432 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(232434849099118488288057964926900122812572027739476361=7^{32}\cdot 29^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $347.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2436} a^{7} - \frac{1}{12} a^{5} - \frac{1}{6} a^{3} - \frac{1}{12} a + \frac{1}{42}$, $\frac{1}{2436} a^{8} - \frac{1}{12} a^{6} - \frac{1}{6} a^{4} - \frac{1}{12} a^{2} + \frac{1}{42} a$, $\frac{1}{2436} a^{9} - \frac{1}{12} a^{5} + \frac{1}{12} a^{3} + \frac{1}{42} a^{2} + \frac{1}{12} a - \frac{1}{6}$, $\frac{1}{70644} a^{10} + \frac{1}{12} a^{6} - \frac{1}{12} a^{4} + \frac{95}{609} a^{3} - \frac{1}{12} a^{2} + \frac{1}{6} a$, $\frac{1}{282576} a^{11} - \frac{1}{282576} a^{10} + \frac{1}{9744} a^{9} - \frac{1}{4872} a^{8} + \frac{7}{48} a^{6} + \frac{3}{16} a^{5} - \frac{347}{3248} a^{4} + \frac{681}{1624} a^{3} + \frac{79}{336} a^{2} - \frac{5}{28} a - \frac{1}{4}$, $\frac{1}{57362928} a^{12} + \frac{1}{659344} a^{11} + \frac{5}{1978032} a^{10} + \frac{5}{34104} a^{9} - \frac{1}{17052} a^{8} - \frac{1}{22736} a^{7} - \frac{43}{336} a^{6} + \frac{190591}{1978032} a^{5} - \frac{13}{11368} a^{4} - \frac{109}{68208} a^{3} - \frac{37}{588} a^{2} - \frac{107}{588} a + \frac{67}{147}$, $\frac{1}{57362928} a^{13} + \frac{1}{659344} a^{11} - \frac{1}{164836} a^{10} + \frac{1}{68208} a^{9} - \frac{5}{68208} a^{8} - \frac{1}{5684} a^{7} - \frac{409883}{1978032} a^{6} + \frac{3}{56} a^{5} - \frac{739}{34104} a^{4} - \frac{15319}{68208} a^{3} - \frac{355}{2352} a^{2} - \frac{26}{147} a - \frac{223}{588}$, $\frac{1}{144726667344} a^{14} - \frac{1}{356469624} a^{12} + \frac{11}{24584112} a^{10} - \frac{5}{141288} a^{8} - \frac{215375}{1247643684} a^{7} + \frac{1}{696} a^{6} + \frac{215375}{6146028} a^{5} - \frac{1}{36} a^{4} - \frac{3443}{105966} a^{3} + \frac{29}{144} a^{2} + \frac{3443}{7308} a + \frac{7645}{51156}$, $\frac{1}{289453334688} a^{15} - \frac{1}{712939248} a^{13} + \frac{11}{49168224} a^{11} - \frac{5}{282576} a^{9} + \frac{148397}{1247643684} a^{8} - \frac{1}{9744} a^{7} + \frac{694055}{3073014} a^{6} + \frac{11}{72} a^{5} - \frac{5276}{52983} a^{4} + \frac{125}{288} a^{3} - \frac{205}{3654} a^{2} - \frac{50819}{102312} a + \frac{19}{42}$, $\frac{1}{289453334688} a^{16} + \frac{1}{344177568} a^{12} - \frac{1}{659344} a^{11} - \frac{1}{5934096} a^{10} + \frac{53441}{712939248} a^{9} - \frac{1}{22736} a^{8} - \frac{5743}{43022196} a^{7} - \frac{179}{1008} a^{6} - \frac{487153}{1978032} a^{5} - \frac{6637}{409248} a^{4} + \frac{2599}{34104} a^{3} + \frac{48593}{102312} a^{2} - \frac{100}{441} a - \frac{215}{441}$, $\frac{1}{58759026941664} a^{17} - \frac{1}{2026173342816} a^{16} - \frac{1}{1013086671408} a^{15} - \frac{1}{337695557136} a^{14} - \frac{13}{9981149472} a^{13} - \frac{17}{9981149472} a^{12} - \frac{41}{57362928} a^{11} - \frac{5063819}{1013086671408} a^{10} - \frac{254363}{8733505788} a^{9} + \frac{1961263}{34934023152} a^{8} - \frac{5065961}{34934023152} a^{7} - \frac{868444}{10755549} a^{6} + \frac{20811491}{344177568} a^{5} + \frac{1275895}{11868192} a^{4} - \frac{15435775}{41538672} a^{3} + \frac{620177}{1432368} a^{2} - \frac{157165}{358092} a + \frac{119977}{358092}$, $\frac{1}{1527734700483264} a^{18} + \frac{1}{169748300053696} a^{17} + \frac{43}{26340253456608} a^{16} - \frac{25}{17560168971072} a^{15} + \frac{19}{5853389657024} a^{14} - \frac{1}{86503295424} a^{13} - \frac{31}{9981149472} a^{12} - \frac{40121903}{52680506913216} a^{11} + \frac{6366291}{1463347414256} a^{10} - \frac{18509495}{151380766992} a^{9} + \frac{40069919}{227071150488} a^{8} - \frac{107136401}{908284601952} a^{7} + \frac{21221065}{2982872256} a^{6} + \frac{191586827}{8948616768} a^{5} - \frac{14604137}{180000912} a^{4} - \frac{24190585}{74483136} a^{3} + \frac{11956067}{37241568} a^{2} + \frac{455227}{6206928} a - \frac{601933}{3103464}$, $\frac{1}{44304306314014656} a^{19} + \frac{1}{218247814354752} a^{17} + \frac{1}{17560168971072} a^{16} - \frac{41}{26340253456608} a^{15} - \frac{1}{365836853564} a^{14} - \frac{23}{86503295424} a^{13} + \frac{4419139}{1527734700483264} a^{12} - \frac{209}{229451712} a^{11} + \frac{41051}{1881446675472} a^{10} + \frac{967301}{113535575244} a^{9} - \frac{19387889}{908284601952} a^{8} - \frac{48054505}{1816569203904} a^{7} - \frac{9975593}{1118577096} a^{6} - \frac{6967644407}{62640317376} a^{5} - \frac{15776273}{102857664} a^{4} + \frac{3092675}{7912128} a^{3} - \frac{5447405}{12413856} a^{2} + \frac{136811}{6206928} a - \frac{1541753}{3103464}$, $\frac{1}{44304306314014656} a^{20} - \frac{1}{763867350241632} a^{17} + \frac{5}{3762893350944} a^{16} + \frac{23}{17560168971072} a^{15} - \frac{31}{13170126728304} a^{14} + \frac{2704577}{381933675120816} a^{13} + \frac{19}{6654099648} a^{12} + \frac{8055623}{7525786701888} a^{11} + \frac{21490993}{6585063364152} a^{10} + \frac{1643331}{14417215904} a^{9} + \frac{77804555}{1816569203904} a^{8} + \frac{183113963}{908284601952} a^{7} - \frac{4532574359}{31320158688} a^{6} + \frac{36590899}{1491436128} a^{5} + \frac{3773963}{308572992} a^{4} + \frac{885256217}{2160010944} a^{3} - \frac{125689}{5320224} a^{2} + \frac{128675}{1432368} a + \frac{160913}{1034488}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 80111690644900000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_7:(C_7:C_3)$ (as 21T12):
| A solvable group of order 147 |
| The 19 conjugacy class representatives for $C_7:(C_7:C_3)$ |
| Character table for $C_7:(C_7:C_3)$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $29$ | 29.7.6.3 | $x^{7} + 928$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.3 | $x^{7} + 928$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.6.3 | $x^{7} + 928$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |