Normalized defining polynomial
\( x^{21} - 214 x^{19} - 220 x^{18} + 18717 x^{17} + 41732 x^{16} - 852438 x^{15} - 3073040 x^{14} + 20199595 x^{13} + 113113667 x^{12} - 170930580 x^{11} - 2137096494 x^{10} - 2290523450 x^{9} + 17125815629 x^{8} + 56412318165 x^{7} + 13631171883 x^{6} - 258246348547 x^{5} - 651686254188 x^{4} - 782285356871 x^{3} - 520499638437 x^{2} - 183845764958 x - 26886832901 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2235917533151453734918175850148468708517637179280239809=13^{4}\cdot 433^{4}\cdot 577^{10}\cdot 859^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $387.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 433, 577, 859$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{35} a^{17} + \frac{17}{35} a^{16} + \frac{4}{35} a^{15} + \frac{11}{35} a^{14} + \frac{6}{35} a^{13} + \frac{1}{7} a^{12} + \frac{3}{7} a^{11} + \frac{1}{35} a^{10} - \frac{17}{35} a^{9} - \frac{13}{35} a^{8} - \frac{2}{5} a^{7} + \frac{2}{35} a^{6} - \frac{9}{35} a^{5} - \frac{4}{35} a^{4} + \frac{1}{5} a^{3} - \frac{17}{35} a^{2} - \frac{2}{35} a + \frac{1}{35}$, $\frac{1}{35} a^{18} - \frac{1}{7} a^{16} + \frac{13}{35} a^{15} - \frac{6}{35} a^{14} + \frac{8}{35} a^{13} - \frac{9}{35} a^{11} + \frac{1}{35} a^{10} - \frac{4}{35} a^{9} - \frac{3}{35} a^{8} - \frac{1}{7} a^{7} - \frac{8}{35} a^{6} + \frac{9}{35} a^{5} + \frac{1}{7} a^{4} + \frac{4}{35} a^{3} + \frac{1}{5} a^{2} - \frac{17}{35}$, $\frac{1}{35} a^{19} - \frac{1}{5} a^{16} + \frac{2}{5} a^{15} - \frac{1}{5} a^{14} - \frac{1}{7} a^{13} + \frac{16}{35} a^{12} + \frac{6}{35} a^{11} + \frac{1}{35} a^{10} + \frac{17}{35} a^{9} - \frac{8}{35} a^{7} - \frac{16}{35} a^{6} - \frac{1}{7} a^{5} - \frac{16}{35} a^{4} + \frac{1}{5} a^{3} - \frac{3}{7} a^{2} + \frac{8}{35} a + \frac{1}{7}$, $\frac{1}{7911965599280294900487887092433819974581363785700662286885078606189152393975} a^{20} + \frac{34291023070692934897647866678005383370638547105252848474050420786515555818}{7911965599280294900487887092433819974581363785700662286885078606189152393975} a^{19} + \frac{3226526269403404541525426606511622370601713533622426498055238658538502302}{226056159979436997156796774069537713559467536734304636768145103033975782685} a^{18} - \frac{10435849884067430110009164117078976493405192754295166133765840912950229027}{1582393119856058980097577418486763994916272757140132457377015721237830478795} a^{17} + \frac{2775634003629838186221897928213286029625088079175840502010175774409913290882}{7911965599280294900487887092433819974581363785700662286885078606189152393975} a^{16} - \frac{3572096250016674423636281436559695721491609697366112440474612126919166393422}{7911965599280294900487887092433819974581363785700662286885078606189152393975} a^{15} - \frac{3509478380618271734327732586018349854223949399003354657977421027841892993239}{7911965599280294900487887092433819974581363785700662286885078606189152393975} a^{14} + \frac{2250684048137593094734073345625358220463638339302177104805994961288465508483}{7911965599280294900487887092433819974581363785700662286885078606189152393975} a^{13} + \frac{1778665808413511598062453258440479921070391777427991660952959937338514953909}{7911965599280294900487887092433819974581363785700662286885078606189152393975} a^{12} - \frac{152125212363892406649652032651097461687429436039884871770197113947599966473}{1130280799897184985783983870347688567797337683671523183840725515169878913425} a^{11} - \frac{756494570273890863027061212443739543176398637632833333496476763359083684618}{7911965599280294900487887092433819974581363785700662286885078606189152393975} a^{10} - \frac{1112903116146370069521652452836761933116934819778352029239348161614117821363}{7911965599280294900487887092433819974581363785700662286885078606189152393975} a^{9} - \frac{2883322520025073520330808528242638257099464841858703971105171149423107590954}{7911965599280294900487887092433819974581363785700662286885078606189152393975} a^{8} - \frac{295764040776722766692447742701700896446096507138464887877332025567613251079}{1130280799897184985783983870347688567797337683671523183840725515169878913425} a^{7} - \frac{493405574783268002451527696145873375929352808492684180669328611873087233557}{1130280799897184985783983870347688567797337683671523183840725515169878913425} a^{6} + \frac{166695120632091760016600199266854226084710428711662399966964666710888960733}{1130280799897184985783983870347688567797337683671523183840725515169878913425} a^{5} - \frac{2872148369067602082545755480640457045069318567272632727258624715221313427869}{7911965599280294900487887092433819974581363785700662286885078606189152393975} a^{4} - \frac{232102878805603396008444138569053991622639084273912405678048676457650109169}{1582393119856058980097577418486763994916272757140132457377015721237830478795} a^{3} + \frac{162068991052927667441016856809771438005067701098967994804157337749686552629}{7911965599280294900487887092433819974581363785700662286885078606189152393975} a^{2} - \frac{234566878413418243308976696571782282044327322116848468791059807979320140961}{1582393119856058980097577418486763994916272757140132457377015721237830478795} a + \frac{717443717332485402881329832431708318039179347157979657295924381382260786317}{7911965599280294900487887092433819974581363785700662286885078606189152393975}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 145708359878000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10206 |
| The 96 conjugacy class representatives for t21n51 are not computed |
| Character table for t21n51 is not computed |
Intermediate fields
| 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.6.4.2 | $x^{6} - 13 x^{3} + 338$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 433 | Data not computed | ||||||
| 577 | Data not computed | ||||||
| 859 | Data not computed | ||||||