Normalized defining polynomial
\( x^{21} - 3 x^{20} - 216 x^{19} + 827 x^{18} + 19053 x^{17} - 92408 x^{16} - 852008 x^{15} + 5447108 x^{14} + 18063702 x^{13} - 181170145 x^{12} - 28330212 x^{11} + 3258772243 x^{10} - 6543724332 x^{9} - 23764340744 x^{8} + 115635520821 x^{7} - 87556544893 x^{6} - 487772295406 x^{5} + 1599367853883 x^{4} - 2276722038197 x^{3} + 1754203059143 x^{2} - 700765109958 x + 110914635341 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(217872863446791145948146230438450321067060200952015625=5^{6}\cdot 7^{4}\cdot 577^{10}\cdot 34519^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $346.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 577, 34519$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{14} - \frac{1}{4} a^{13} + \frac{1}{4} a^{12} - \frac{1}{2} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{16} - \frac{1}{4} a^{15} - \frac{3}{8} a^{14} + \frac{1}{4} a^{13} - \frac{1}{8} a^{12} + \frac{1}{4} a^{11} + \frac{1}{8} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{1}{8} a^{2} - \frac{1}{2} a + \frac{3}{8}$, $\frac{1}{16} a^{18} + \frac{1}{16} a^{16} + \frac{3}{16} a^{15} - \frac{1}{16} a^{14} + \frac{5}{16} a^{13} - \frac{3}{16} a^{12} + \frac{3}{16} a^{11} - \frac{3}{16} a^{10} + \frac{1}{8} a^{9} + \frac{3}{8} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{1}{16} a^{4} - \frac{1}{8} a^{3} - \frac{3}{16} a^{2} - \frac{5}{16} a + \frac{7}{16}$, $\frac{1}{120160} a^{19} + \frac{319}{24032} a^{18} + \frac{5297}{120160} a^{17} + \frac{3499}{60080} a^{16} - \frac{586}{3755} a^{15} + \frac{5865}{12016} a^{14} - \frac{541}{30040} a^{13} - \frac{25867}{60080} a^{12} - \frac{22521}{60080} a^{11} - \frac{32863}{120160} a^{10} + \frac{9757}{30040} a^{9} - \frac{18071}{60080} a^{8} - \frac{3541}{30040} a^{7} + \frac{21279}{60080} a^{6} + \frac{34253}{120160} a^{5} - \frac{785}{24032} a^{4} + \frac{45183}{120160} a^{3} + \frac{13901}{60080} a^{2} - \frac{7069}{15020} a + \frac{46053}{120160}$, $\frac{1}{2179265388942288799633338460636245902701102966506622199683698838720} a^{20} - \frac{959414143431022098683491226040505800295066836779369026713751}{544816347235572199908334615159061475675275741626655549920924709680} a^{19} - \frac{162900841631618547140547087651426889906328290427429078783084547}{544816347235572199908334615159061475675275741626655549920924709680} a^{18} - \frac{14549137826261419223492451499373885520252437996017701355308109501}{435853077788457759926667692127249180540220593301324439936739767744} a^{17} - \frac{52638571721172135258683974185559455103892488729218090939748070797}{1089632694471144399816669230318122951350551483253311099841849419360} a^{16} + \frac{41379240225549818054579284863868662398032850388834575192898989989}{1089632694471144399816669230318122951350551483253311099841849419360} a^{15} - \frac{371168922019667234563960770308262841815806164367769745546730122237}{1089632694471144399816669230318122951350551483253311099841849419360} a^{14} + \frac{179748032897486693362308458261979114724638206800299591354313953851}{1089632694471144399816669230318122951350551483253311099841849419360} a^{13} - \frac{24582769366526775976546001816610433561374061650712190391283862947}{272408173617786099954167307579530737837637870813327774960462354840} a^{12} - \frac{157746883583916484247536350192744407943239484662691464914578126397}{435853077788457759926667692127249180540220593301324439936739767744} a^{11} - \frac{26191687308991321060727528260705333887956552848691761298299595191}{435853077788457759926667692127249180540220593301324439936739767744} a^{10} + \frac{132066181522627415769502538099073209455263502023418277740820537403}{1089632694471144399816669230318122951350551483253311099841849419360} a^{9} + \frac{234740816921620946969624103225742282690874113578473946952143440287}{1089632694471144399816669230318122951350551483253311099841849419360} a^{8} + \frac{249909882203871400933904850595484524255864072781878646494381165997}{1089632694471144399816669230318122951350551483253311099841849419360} a^{7} + \frac{276802489000028286193883696635323507752760973531151599147184546091}{2179265388942288799633338460636245902701102966506622199683698838720} a^{6} + \frac{54975643262191104154315043968728540560374911965024186290498361313}{136204086808893049977083653789765368918818935406663887480231177420} a^{5} + \frac{304606827641209627434543044182224293822250353882294824533902551809}{1089632694471144399816669230318122951350551483253311099841849419360} a^{4} + \frac{191399745671696757007063559364304531389372261585967967790375762573}{435853077788457759926667692127249180540220593301324439936739767744} a^{3} + \frac{53522016718870948207231904924665506009434016914916340781896210325}{217926538894228879963333846063624590270110296650662219968369883872} a^{2} - \frac{484069623315441656708629492640962568422572639007099480066617536419}{2179265388942288799633338460636245902701102966506622199683698838720} a + \frac{969831165905099742699322979522022212753964862633182205016532212173}{2179265388942288799633338460636245902701102966506622199683698838720}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46197373893900000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10206 |
| The 96 conjugacy class representatives for t21n51 are not computed |
| Character table for t21n51 is not computed |
Intermediate fields
| 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | R | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 577 | Data not computed | ||||||
| 34519 | Data not computed | ||||||