Normalized defining polynomial
\( x^{21} - 42 x^{19} + 756 x^{17} - 7616 x^{15} - 18 x^{14} + 47040 x^{13} + 504 x^{12} - 183456 x^{11} - 5544 x^{10} + 448448 x^{9} + 30240 x^{8} - 659008 x^{7} - 84672 x^{6} + 533120 x^{5} + 112896 x^{4} - 200704 x^{3} - 56448 x^{2} + 25088 x + 7808 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2130661905984884162896886347384923357184=2^{18}\cdot 7^{25}\cdot 67^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{13} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{224} a^{14} - \frac{1}{8} a^{10} + \frac{11}{112} a^{7} + \frac{3}{8} a^{5} - \frac{1}{2} a - \frac{1}{14}$, $\frac{1}{224} a^{15} - \frac{1}{8} a^{11} + \frac{11}{112} a^{8} + \frac{3}{8} a^{6} - \frac{1}{2} a^{2} - \frac{1}{14} a$, $\frac{1}{224} a^{16} + \frac{11}{112} a^{9} - \frac{1}{8} a^{7} - \frac{1}{4} a^{5} - \frac{1}{14} a^{2}$, $\frac{1}{448} a^{17} - \frac{1}{16} a^{13} + \frac{11}{224} a^{10} + \frac{3}{16} a^{8} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} - \frac{1}{28} a^{3}$, $\frac{1}{3136} a^{18} + \frac{1}{3136} a^{17} - \frac{1}{784} a^{16} + \frac{1}{784} a^{15} + \frac{1}{1568} a^{14} - \frac{1}{16} a^{13} + \frac{3}{56} a^{12} - \frac{101}{1568} a^{11} - \frac{129}{1568} a^{10} + \frac{111}{784} a^{9} - \frac{125}{784} a^{8} + \frac{193}{784} a^{7} + \frac{5}{56} a^{5} - \frac{25}{98} a^{4} + \frac{83}{196} a^{3} + \frac{1}{49} a^{2} + \frac{33}{98} a + \frac{27}{98}$, $\frac{1}{6272} a^{19} + \frac{1}{3136} a^{17} + \frac{1}{784} a^{16} + \frac{3}{1568} a^{15} + \frac{3}{1568} a^{14} + \frac{3}{112} a^{13} + \frac{11}{3136} a^{12} - \frac{1}{14} a^{11} + \frac{29}{392} a^{10} + \frac{39}{392} a^{9} - \frac{121}{784} a^{8} - \frac{107}{784} a^{7} + \frac{27}{56} a^{6} + \frac{3}{196} a^{5} - \frac{1}{28} a^{4} - \frac{43}{196} a^{3} + \frac{20}{49} a^{2} - \frac{31}{98} a - \frac{17}{98}$, $\frac{1}{6272} a^{20} + \frac{3}{3136} a^{17} - \frac{1}{784} a^{16} + \frac{1}{1568} a^{15} - \frac{1}{1568} a^{14} - \frac{185}{3136} a^{13} - \frac{25}{224} a^{11} - \frac{107}{1568} a^{10} + \frac{83}{784} a^{9} + \frac{9}{392} a^{8} - \frac{179}{784} a^{7} + \frac{13}{49} a^{6} - \frac{3}{8} a^{5} + \frac{1}{28} a^{4} + \frac{95}{196} a^{3} - \frac{13}{49} a^{2} + \frac{24}{49} a + \frac{15}{98}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29136142114500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6174 |
| The 60 conjugacy class representatives for t21n40 are not computed |
| Character table for t21n40 is not computed |
Intermediate fields
| 3.3.469.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | $21$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $21$ | $21$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.12.1 | $x^{14} - 2 x^{7} + 4$ | $7$ | $2$ | $12$ | $(C_7:C_3) \times C_2$ | $[\ ]_{7}^{6}$ | |
| 7 | Data not computed | ||||||
| $67$ | $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 67.6.3.2 | $x^{6} - 4489 x^{2} + 4812208$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 67.6.3.2 | $x^{6} - 4489 x^{2} + 4812208$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |