Normalized defining polynomial
\( x^{21} - 2 x^{20} - 60 x^{19} + 88 x^{18} + 1406 x^{17} - 1488 x^{16} - 16808 x^{15} + 12300 x^{14} + 112044 x^{13} - 52936 x^{12} - 427504 x^{11} + 114160 x^{10} + 930280 x^{9} - 75840 x^{8} - 1117904 x^{7} - 130544 x^{6} + 685440 x^{5} + 222592 x^{4} - 153568 x^{3} - 89600 x^{2} - 11520 x + 64 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(212470339051203253792638525635605096824832=2^{20}\cdot 7^{6}\cdot 37^{7}\cdot 1621^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 37, 1621$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{12}$, $\frac{1}{16} a^{13} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{14} - \frac{1}{4} a^{6}$, $\frac{1}{32} a^{15} - \frac{1}{8} a^{7} - \frac{1}{2} a$, $\frac{1}{32} a^{16} - \frac{1}{8} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{32} a^{17} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{64} a^{18} - \frac{1}{16} a^{10} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{64} a^{19} - \frac{1}{16} a^{11} - \frac{1}{4} a^{5}$, $\frac{1}{211342715851994697751574320832} a^{20} - \frac{576588295240302575560500497}{211342715851994697751574320832} a^{19} - \frac{321110498219134478224295741}{52835678962998674437893580208} a^{18} + \frac{572679746989456804835993337}{105671357925997348875787160416} a^{17} + \frac{768558291030985188523792945}{52835678962998674437893580208} a^{16} + \frac{831976754675675763093688285}{105671357925997348875787160416} a^{15} + \frac{409864302327984087879064611}{13208919740749668609473395052} a^{14} + \frac{61959879879022784250992875}{6604459870374834304736697526} a^{13} - \frac{2748020755817062190974810465}{52835678962998674437893580208} a^{12} - \frac{3157074884963758882673729}{593659314190996341998804272} a^{11} - \frac{126368937827967423655482457}{6604459870374834304736697526} a^{10} - \frac{196339741858286293000658896}{3302229935187417152368348763} a^{9} - \frac{1586187909872058587049411767}{13208919740749668609473395052} a^{8} + \frac{1203604337134445640228522685}{26417839481499337218946790104} a^{7} - \frac{10591990467866645471948195}{148414828547749085499701068} a^{6} - \frac{1165101699723989854186077541}{6604459870374834304736697526} a^{5} - \frac{620380124982572680826968137}{3302229935187417152368348763} a^{4} + \frac{927479463369155011187372463}{6604459870374834304736697526} a^{3} - \frac{2928420480983958252711942499}{6604459870374834304736697526} a^{2} - \frac{34448425718961526307402381}{6604459870374834304736697526} a + \frac{930403957867416597649682408}{3302229935187417152368348763}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 360808724783000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15120 |
| The 27 conjugacy class representatives for t21n57 |
| Character table for t21n57 is not computed |
Intermediate fields
| 3.3.148.1, 7.7.8240282176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | $21$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $21$ | $15{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.12.14.1 | $x^{12} + 2 x^{3} + 2$ | $12$ | $1$ | $14$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| $7$ | 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $37$ | 37.7.0.1 | $x^{7} - 4 x + 5$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 37.14.7.1 | $x^{14} - 405224 x^{8} + 41051622544 x^{2} - 2373296928325$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 1621 | Data not computed | ||||||