Normalized defining polynomial
\( x^{21} - 3 x^{20} - 279 x^{19} + 621 x^{18} + 32242 x^{17} - 33086 x^{16} - 2041324 x^{15} - 1014192 x^{14} + 75996139 x^{13} + 168613567 x^{12} - 1525715221 x^{11} - 6779995633 x^{10} + 8590831880 x^{9} + 112623606960 x^{8} + 212495615538 x^{7} - 388239708418 x^{6} - 2659740900832 x^{5} - 6030549227920 x^{4} - 7721036828824 x^{3} - 5928205956328 x^{2} - 2561280441560 x - 481522673032 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(211894309505097231632930771477455617607260995268779331026944=2^{44}\cdot 809^{6}\cdot 207278461946293^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $668.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 809, 207278461946293$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{15} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{596} a^{18} + \frac{23}{596} a^{17} + \frac{79}{596} a^{16} - \frac{19}{596} a^{15} + \frac{2}{149} a^{14} + \frac{11}{149} a^{13} + \frac{10}{149} a^{12} + \frac{44}{149} a^{11} - \frac{297}{596} a^{10} - \frac{295}{596} a^{9} + \frac{229}{596} a^{8} - \frac{45}{596} a^{7} - \frac{1}{298} a^{6} + \frac{105}{298} a^{5} - \frac{67}{298} a^{4} + \frac{109}{298} a^{3} + \frac{5}{149} a^{2} - \frac{11}{149} a - \frac{31}{149}$, $\frac{1}{596} a^{19} - \frac{3}{596} a^{17} - \frac{12}{149} a^{16} - \frac{1}{298} a^{15} - \frac{35}{149} a^{14} - \frac{39}{298} a^{13} - \frac{37}{149} a^{12} - \frac{173}{596} a^{11} - \frac{5}{149} a^{10} + \frac{11}{596} a^{9} + \frac{13}{149} a^{8} + \frac{72}{149} a^{7} + \frac{64}{149} a^{6} - \frac{49}{149} a^{5} - \frac{69}{149} a^{4} + \frac{18}{149} a^{3} + \frac{23}{149} a^{2} + \frac{73}{149} a - \frac{32}{149}$, $\frac{1}{129647401721115148671320948007158524736156} a^{20} - \frac{86844474876770692842212557077262977735}{129647401721115148671320948007158524736156} a^{19} - \frac{17450548498357230601957546271790479380}{32411850430278787167830237001789631184039} a^{18} - \frac{5629089321417981877558125163259614501095}{129647401721115148671320948007158524736156} a^{17} - \frac{18437269263204464372803573272713402662247}{129647401721115148671320948007158524736156} a^{16} - \frac{4415881310602565289774435672000729861908}{32411850430278787167830237001789631184039} a^{15} + \frac{5141204318840503581300719413154567390609}{64823700860557574335660474003579262368078} a^{14} + \frac{2979557366278210946793851004302645631793}{64823700860557574335660474003579262368078} a^{13} - \frac{16213440750263534220214906020583741480421}{129647401721115148671320948007158524736156} a^{12} + \frac{44694723482791825090290072593579408048147}{129647401721115148671320948007158524736156} a^{11} - \frac{132516857632776973070802954280305835360}{1409210888272990746427401608773462225393} a^{10} - \frac{15320225240949231362244757349926837504789}{129647401721115148671320948007158524736156} a^{9} - \frac{15748218847070853390573490946275116810495}{129647401721115148671320948007158524736156} a^{8} - \frac{19322211353408675359449650239614622644941}{64823700860557574335660474003579262368078} a^{7} - \frac{18538130636942756444710805836221743066465}{64823700860557574335660474003579262368078} a^{6} - \frac{61321482455303519095503367181042251481}{1409210888272990746427401608773462225393} a^{5} - \frac{31196556632362340514981941791352492452669}{64823700860557574335660474003579262368078} a^{4} - \frac{6513802718726352368278449462885794109705}{32411850430278787167830237001789631184039} a^{3} - \frac{4521860539440227363879184503004151190912}{32411850430278787167830237001789631184039} a^{2} - \frac{11787949920869243903543572674924144356775}{32411850430278787167830237001789631184039} a + \frac{205577453396972897044024513218427530317}{531341810332439133898856344291633298099}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 426259268490000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 23514624 |
| The 132 conjugacy class representatives for t21n145 are not computed |
| Character table for t21n145 is not computed |
Intermediate fields
| 7.7.670188544.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.4.8.8 | $x^{4} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.6.10.5 | $x^{6} + 2 x^{5} + 6$ | $6$ | $1$ | $10$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ | |
| 2.8.24.132 | $x^{8} + 12 x^{2} + 8 x + 10$ | $8$ | $1$ | $24$ | $C_2 \wr S_4$ | $[2, 8/3, 8/3, 10/3, 10/3, 4]_{3}^{2}$ | |
| 809 | Data not computed | ||||||
| 207278461946293 | Data not computed | ||||||