Normalized defining polynomial
\( x^{21} - 7 x^{20} - 84 x^{19} + 602 x^{18} + 2639 x^{17} - 19901 x^{16} - 37646 x^{15} + 319090 x^{14} + 232456 x^{13} - 2582937 x^{12} - 497623 x^{11} + 10297315 x^{10} + 976654 x^{9} - 20496567 x^{8} - 4195819 x^{7} + 18273234 x^{6} + 6621433 x^{5} - 4948475 x^{4} - 1775109 x^{3} + 562184 x^{2} + 131824 x - 26753 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2118750674738565668124319822288824029028146457721=7^{36}\cdot 19^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $200.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(931=7^{2}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{931}(64,·)$, $\chi_{931}(1,·)$, $\chi_{931}(771,·)$, $\chi_{931}(197,·)$, $\chi_{931}(134,·)$, $\chi_{931}(904,·)$, $\chi_{931}(330,·)$, $\chi_{931}(267,·)$, $\chi_{931}(463,·)$, $\chi_{931}(400,·)$, $\chi_{931}(596,·)$, $\chi_{931}(533,·)$, $\chi_{931}(729,·)$, $\chi_{931}(666,·)$, $\chi_{931}(862,·)$, $\chi_{931}(799,·)$, $\chi_{931}(106,·)$, $\chi_{931}(239,·)$, $\chi_{931}(372,·)$, $\chi_{931}(505,·)$, $\chi_{931}(638,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{31} a^{17} + \frac{1}{31} a^{16} - \frac{10}{31} a^{14} - \frac{15}{31} a^{13} - \frac{6}{31} a^{12} + \frac{7}{31} a^{11} - \frac{12}{31} a^{10} + \frac{12}{31} a^{9} - \frac{6}{31} a^{8} - \frac{1}{31} a^{7} + \frac{7}{31} a^{6} + \frac{13}{31} a^{5} + \frac{5}{31} a^{4} - \frac{11}{31} a^{3} + \frac{6}{31} a^{2} + \frac{10}{31} a$, $\frac{1}{589} a^{18} + \frac{8}{589} a^{17} - \frac{210}{589} a^{16} + \frac{207}{589} a^{15} - \frac{116}{589} a^{14} + \frac{44}{589} a^{13} - \frac{283}{589} a^{12} + \frac{37}{589} a^{11} - \frac{165}{589} a^{10} - \frac{232}{589} a^{9} + \frac{112}{589} a^{8} + \frac{1}{19} a^{7} + \frac{3}{19} a^{6} + \frac{251}{589} a^{5} + \frac{179}{589} a^{4} - \frac{9}{589} a^{3} + \frac{21}{589} a^{2} + \frac{70}{589} a - \frac{1}{19}$, $\frac{1}{11191} a^{19} + \frac{3}{11191} a^{18} + \frac{168}{11191} a^{17} - \frac{92}{11191} a^{16} + \frac{616}{11191} a^{15} - \frac{2967}{11191} a^{14} - \frac{294}{11191} a^{13} + \frac{5423}{11191} a^{12} - \frac{3314}{11191} a^{11} + \frac{2645}{11191} a^{10} + \frac{3343}{11191} a^{9} - \frac{5393}{11191} a^{8} - \frac{3425}{11191} a^{7} - \frac{4945}{11191} a^{6} - \frac{5066}{11191} a^{5} + \frac{1775}{11191} a^{4} + \frac{2536}{11191} a^{3} + \frac{4240}{11191} a^{2} - \frac{2680}{11191} a - \frac{109}{361}$, $\frac{1}{174405010991693265864179185797181523268600684670033930363} a^{20} + \frac{7202909030155519709688083580950871615268339161111121}{174405010991693265864179185797181523268600684670033930363} a^{19} + \frac{142088631322679602859484141135831161207276213543754548}{174405010991693265864179185797181523268600684670033930363} a^{18} + \frac{2100486298513800470409736990700118579076208471428687234}{174405010991693265864179185797181523268600684670033930363} a^{17} - \frac{18105400980629002495254800665898866932176984782667771129}{174405010991693265864179185797181523268600684670033930363} a^{16} + \frac{46339262081816835228069518798869364987792551108268326396}{174405010991693265864179185797181523268600684670033930363} a^{15} + \frac{64368442219939854341271132652876457248701396686720796246}{174405010991693265864179185797181523268600684670033930363} a^{14} - \frac{41864978536210299083621903777516637128055929166569355019}{174405010991693265864179185797181523268600684670033930363} a^{13} - \frac{34455726149818528346332260060981267892299838688229342671}{174405010991693265864179185797181523268600684670033930363} a^{12} - \frac{16378787093509943386432873693404993933572338202192329934}{174405010991693265864179185797181523268600684670033930363} a^{11} - \frac{63188108465683725605718063274708734060692463605899854199}{174405010991693265864179185797181523268600684670033930363} a^{10} - \frac{32601505514292851721572646940191158766821135782980963598}{174405010991693265864179185797181523268600684670033930363} a^{9} - \frac{8712132323429330730412401062226628429461745899509466451}{174405010991693265864179185797181523268600684670033930363} a^{8} + \frac{30761734239375069955898612990645968523563448436975388224}{174405010991693265864179185797181523268600684670033930363} a^{7} - \frac{53626544397245791280176330339964737760937467702821422311}{174405010991693265864179185797181523268600684670033930363} a^{6} + \frac{52268732201754978873183266361998135756447617927362009681}{174405010991693265864179185797181523268600684670033930363} a^{5} + \frac{7123532151622747738643564261932430294340653232695812423}{174405010991693265864179185797181523268600684670033930363} a^{4} - \frac{27312339849981280154755554415619244059553930658066310375}{174405010991693265864179185797181523268600684670033930363} a^{3} + \frac{59500762705096815782907818969666357751511157652016175895}{174405010991693265864179185797181523268600684670033930363} a^{2} + \frac{21640996218440189152584389117901021151203369301429756854}{174405010991693265864179185797181523268600684670033930363} a - \frac{758979162833486355586244204121259317187962359520460381}{5625968096506234382715457606360694298987118860323675173}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 832088128597863300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.361.1, 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | $21$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | $21$ | $21$ | R | $21$ | $21$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{21}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | $21$ | $21$ | $21$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ |
| 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ | |
| 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ | |
| $19$ | 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |