Normalized defining polynomial
\( x^{21} - 6 x^{20} - 55 x^{19} + 395 x^{18} + 737 x^{17} - 8463 x^{16} + 1551 x^{15} + 74059 x^{14} - 69748 x^{13} - 277632 x^{12} + 287628 x^{11} + 551344 x^{10} - 344830 x^{9} - 626935 x^{8} - 12040 x^{7} + 210641 x^{6} + 62865 x^{5} - 3790 x^{4} - 2084 x^{3} + 82 x^{2} + 18 x - 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(211665195536810304505959087862660999097=11^{7}\cdot 43^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{19351} a^{19} + \frac{3373}{19351} a^{18} - \frac{7940}{19351} a^{17} + \frac{82}{19351} a^{16} + \frac{988}{19351} a^{15} + \frac{4783}{19351} a^{14} - \frac{6188}{19351} a^{13} + \frac{5962}{19351} a^{12} - \frac{1146}{19351} a^{11} - \frac{3793}{19351} a^{10} + \frac{9232}{19351} a^{9} + \frac{3418}{19351} a^{8} - \frac{5669}{19351} a^{7} - \frac{6421}{19351} a^{6} + \frac{2869}{19351} a^{5} - \frac{3790}{19351} a^{4} - \frac{8370}{19351} a^{3} - \frac{5260}{19351} a^{2} + \frac{1005}{19351} a - \frac{6161}{19351}$, $\frac{1}{58567930514408262071694525264253523} a^{20} + \frac{695789792243269397429868218240}{58567930514408262071694525264253523} a^{19} + \frac{22828799580426465235611394614753101}{58567930514408262071694525264253523} a^{18} + \frac{8620053342600641115351064327028125}{58567930514408262071694525264253523} a^{17} + \frac{26016331442348040716140590605408649}{58567930514408262071694525264253523} a^{16} + \frac{14926801475888888686112588452570423}{58567930514408262071694525264253523} a^{15} - \frac{23465345914954158789280954228283443}{58567930514408262071694525264253523} a^{14} + \frac{17625640687476414461475754289203767}{58567930514408262071694525264253523} a^{13} - \frac{3514971315707678644870019043440169}{58567930514408262071694525264253523} a^{12} + \frac{27389503394377254353011224286750644}{58567930514408262071694525264253523} a^{11} - \frac{1801951142641298719164421413501689}{58567930514408262071694525264253523} a^{10} - \frac{1655255000171251071927243472027884}{58567930514408262071694525264253523} a^{9} + \frac{21046115280375301252204924219931317}{58567930514408262071694525264253523} a^{8} + \frac{4893356605469690614033916661620786}{58567930514408262071694525264253523} a^{7} + \frac{9495115942320696945171460474612811}{58567930514408262071694525264253523} a^{6} + \frac{8279297738897250659977763877586462}{58567930514408262071694525264253523} a^{5} - \frac{2926602977867947696542067269745421}{58567930514408262071694525264253523} a^{4} + \frac{26999434596468338162022258888318672}{58567930514408262071694525264253523} a^{3} - \frac{1693571651994303900770034606318262}{58567930514408262071694525264253523} a^{2} + \frac{24541331214103142991627213843269719}{58567930514408262071694525264253523} a - \frac{10890392316148990939124449323150363}{58567930514408262071694525264253523}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2240296145980 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_7\times S_3$ (as 21T6):
| A solvable group of order 42 |
| The 21 conjugacy class representatives for $C_7\times S_3$ |
| Character table for $C_7\times S_3$ is not computed |
Intermediate fields
| 3.3.473.1, 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | $21$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | R | $21$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.7.0.1 | $x^{7} - x + 4$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 11.14.7.2 | $x^{14} - 1771561 x^{2} + 77948684$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| $43$ | 43.7.6.1 | $x^{7} - 43$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 43.14.13.1 | $x^{14} - 43$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |