Normalized defining polynomial
\( x^{21} - x^{20} - 220 x^{19} + 59 x^{18} + 19731 x^{17} + 10669 x^{16} - 933778 x^{15} - 1261590 x^{14} + 24832342 x^{13} + 53278874 x^{12} - 359999966 x^{11} - 1090202912 x^{10} + 2403675074 x^{9} + 11114459489 x^{8} - 1212682637 x^{7} - 49217032511 x^{6} - 53493754115 x^{5} + 42961970730 x^{4} + 119457363636 x^{3} + 84397161408 x^{2} + 23424596481 x + 1888668673 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(204936738540452503064519918459921419848199261587556801=463^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $345.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $463$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(463\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{463}(1,·)$, $\chi_{463}(450,·)$, $\chi_{463}(196,·)$, $\chi_{463}(182,·)$, $\chi_{463}(449,·)$, $\chi_{463}(200,·)$, $\chi_{463}(21,·)$, $\chi_{463}(412,·)$, $\chi_{463}(286,·)$, $\chi_{463}(33,·)$, $\chi_{463}(34,·)$, $\chi_{463}(163,·)$, $\chi_{463}(230,·)$, $\chi_{463}(169,·)$, $\chi_{463}(178,·)$, $\chi_{463}(308,·)$, $\chi_{463}(318,·)$, $\chi_{463}(118,·)$, $\chi_{463}(441,·)$, $\chi_{463}(251,·)$, $\chi_{463}(190,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{101} a^{19} - \frac{32}{101} a^{18} + \frac{18}{101} a^{16} - \frac{17}{101} a^{15} + \frac{27}{101} a^{14} + \frac{33}{101} a^{13} - \frac{50}{101} a^{12} - \frac{12}{101} a^{11} + \frac{47}{101} a^{10} + \frac{20}{101} a^{9} + \frac{38}{101} a^{8} - \frac{43}{101} a^{7} + \frac{10}{101} a^{6} - \frac{18}{101} a^{5} + \frac{50}{101} a^{4} + \frac{39}{101} a^{3} - \frac{32}{101} a^{2} + \frac{34}{101} a - \frac{36}{101}$, $\frac{1}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607} a^{20} + \frac{86965159837721340256688190222676610457906247995267899420723579690786734659176205185688609285}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607} a^{19} + \frac{10293871796545219938658114816762835859688168457429344083645943379186861106607617504748394472492}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607} a^{18} + \frac{4852457073798592942469886955390107311787726188176458929022093502456613187967390965786554516112}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607} a^{17} - \frac{7743920069241201775291090804889859695898161737553091662589770971428338874915948723109549619288}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607} a^{16} + \frac{1251355011207425712133964182792007185667827687241962679394426862331995769253389415522710962605}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607} a^{15} - \frac{8553062775570283292374566793828285381243282406027455582824939838963581631094279620469005543239}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607} a^{14} - \frac{5924486590003717926748093748885894948732527398193555404432974014811183928466326607419077161889}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607} a^{13} - \frac{7507371508624380123455294141914034695577164459761929359536062798649310685782374124688307714336}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607} a^{12} - \frac{2347907397904412347370050406788627148372516440475001139146093399023655465807658691015522782822}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607} a^{11} + \frac{932427464464118927600225705220941438099464681647381652226801983874635975703185408418730524813}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607} a^{10} + \frac{9948851001388313421512826416094534242310757675929276745634226862832344458084205386096394627464}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607} a^{9} + \frac{5570957262509547736360911012725472014386426134946830365631206271413011362564420713154753952959}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607} a^{8} - \frac{4258558905395141260057946224383646087401980853028728156861614353804476108083665218040032403352}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607} a^{7} + \frac{1916615080601160749134064595694055843678264326706064702932470395925086246780578221564272519734}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607} a^{6} + \frac{2657731835728214061592102869469601730838172468015170378165910930259276704465318588964810070458}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607} a^{5} - \frac{8557039566378774554106305230365077474976969759274037763899103458114245506733104194118352364060}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607} a^{4} + \frac{5128540859466854331552081520077205676258154184998493735041188744342152034353113569850018588180}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607} a^{3} - \frac{9973415995271795842826839842080829388107590267807264227409200283598734196782352543889187643170}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607} a^{2} + \frac{1485592505484104547506979596817623491434530916607015545880595768070413792944077332411378519114}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607} a - \frac{6481281765616522844967013867673969819470488417057368889761925874840895913231503016345239272239}{21177386320080591158077402682952589002934166599918449484499169991275320085740063238713698038607}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 62050086594131485000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.214369.1, 7.7.9851127637605409.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | $21$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | $21$ | $21$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | $21$ | $21$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 463 | Data not computed | ||||||