Normalized defining polynomial
\( x^{21} - 40 x^{19} - 8 x^{18} + 579 x^{17} + 128 x^{16} - 4024 x^{15} - 828 x^{14} + 14642 x^{13} + 3152 x^{12} - 29068 x^{11} - 6976 x^{10} + 31979 x^{9} + 8240 x^{8} - 19278 x^{7} - 4888 x^{6} + 6120 x^{5} + 1376 x^{4} - 924 x^{3} - 168 x^{2} + 48 x + 8 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(204156663640790261439595720457863561216=2^{30}\cdot 7^{14}\cdot 809^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 809$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{14} - \frac{1}{2} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{15} - \frac{1}{2} a^{11} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{76342517945518036292804} a^{20} - \frac{1793403187379517189601}{38171258972759018146402} a^{19} - \frac{5346931838987985191633}{76342517945518036292804} a^{18} - \frac{8157280095287941838993}{38171258972759018146402} a^{17} + \frac{4790920699203445918791}{76342517945518036292804} a^{16} + \frac{2083805194288127307021}{38171258972759018146402} a^{15} - \frac{11602141230647421453587}{76342517945518036292804} a^{14} + \frac{8601249126359852102363}{38171258972759018146402} a^{13} - \frac{6816834634626926629149}{38171258972759018146402} a^{12} + \frac{5049748360817596045151}{19085629486379509073201} a^{11} + \frac{14714087495260414170227}{38171258972759018146402} a^{10} - \frac{295792401266424843801}{19085629486379509073201} a^{9} + \frac{13887807622717603645419}{76342517945518036292804} a^{8} - \frac{18816226199906806144641}{38171258972759018146402} a^{7} - \frac{31672393497775671790189}{76342517945518036292804} a^{6} + \frac{12727317211641084967901}{38171258972759018146402} a^{5} - \frac{11645932808255050582375}{38171258972759018146402} a^{4} - \frac{7024165789655291598374}{19085629486379509073201} a^{3} - \frac{215551755992400816048}{19085629486379509073201} a^{2} + \frac{7703751187703341315194}{19085629486379509073201} a - \frac{1235904188266802577622}{19085629486379509073201}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2811089509780 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times \PSL(2,7)$ (as 21T22):
| A non-solvable group of order 504 |
| The 18 conjugacy class representatives for $C_3\times \PSL(2,7)$ |
| Character table for $C_3\times \PSL(2,7)$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.7.670188544.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 24 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | $21$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.12.24.142 | $x^{12} + 8 x^{11} + 32 x^{10} - 92 x^{9} - 70 x^{8} + 96 x^{7} + 80 x^{6} + 112 x^{5} + 76 x^{4} + 96 x^{3} - 32 x^{2} - 112 x + 120$ | $4$ | $3$ | $24$ | 12T45 | $[8/3, 8/3]_{3}^{6}$ | |
| 7 | Data not computed | ||||||
| 809 | Data not computed | ||||||