Normalized defining polynomial
\( x^{21} - 2 x^{20} - 38 x^{19} + 69 x^{18} + 568 x^{17} - 933 x^{16} - 4319 x^{15} + 6417 x^{14} + 18052 x^{13} - 24428 x^{12} - 41833 x^{11} + 52044 x^{10} + 51770 x^{9} - 58979 x^{8} - 31596 x^{7} + 30977 x^{6} + 9259 x^{5} - 5733 x^{4} - 1455 x^{3} + 114 x^{2} + 17 x - 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(204156663640790261439595720457863561216=2^{30}\cdot 7^{14}\cdot 809^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 809$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{19} a^{18} + \frac{4}{19} a^{17} + \frac{8}{19} a^{16} + \frac{4}{19} a^{15} + \frac{2}{19} a^{14} - \frac{9}{19} a^{13} - \frac{3}{19} a^{12} + \frac{4}{19} a^{11} + \frac{2}{19} a^{10} + \frac{6}{19} a^{9} + \frac{3}{19} a^{8} - \frac{2}{19} a^{7} + \frac{2}{19} a^{6} + \frac{8}{19} a^{5} + \frac{1}{19} a^{4} - \frac{4}{19} a^{3} - \frac{8}{19} a^{2} - \frac{9}{19} a - \frac{7}{19}$, $\frac{1}{19} a^{19} - \frac{8}{19} a^{17} - \frac{9}{19} a^{16} + \frac{5}{19} a^{15} + \frac{2}{19} a^{14} - \frac{5}{19} a^{13} - \frac{3}{19} a^{12} + \frac{5}{19} a^{11} - \frac{2}{19} a^{10} - \frac{2}{19} a^{9} + \frac{5}{19} a^{8} - \frac{9}{19} a^{7} + \frac{7}{19} a^{5} - \frac{8}{19} a^{4} + \frac{8}{19} a^{3} + \frac{4}{19} a^{2} - \frac{9}{19} a + \frac{9}{19}$, $\frac{1}{138866464374367295844465157} a^{20} - \frac{3271415163770384962677383}{138866464374367295844465157} a^{19} - \frac{863003881126673056180102}{138866464374367295844465157} a^{18} + \frac{49027299018998041066411396}{138866464374367295844465157} a^{17} - \frac{25753300433329862262933964}{138866464374367295844465157} a^{16} + \frac{56879650827033070419704170}{138866464374367295844465157} a^{15} - \frac{42711744151587582934888255}{138866464374367295844465157} a^{14} - \frac{1181439735526319339276657}{138866464374367295844465157} a^{13} + \frac{11661493119476747054993477}{138866464374367295844465157} a^{12} - \frac{49875191810354430038044815}{138866464374367295844465157} a^{11} + \frac{25323141940750671485466090}{138866464374367295844465157} a^{10} - \frac{41862939849948278696356959}{138866464374367295844465157} a^{9} + \frac{45404620420168955419278927}{138866464374367295844465157} a^{8} + \frac{44640077394931748039058944}{138866464374367295844465157} a^{7} - \frac{30064984685309821872463041}{138866464374367295844465157} a^{6} + \frac{26564992345845874642644603}{138866464374367295844465157} a^{5} - \frac{5180479627568573306048346}{138866464374367295844465157} a^{4} + \frac{61724938544331117276921486}{138866464374367295844465157} a^{3} + \frac{23074655802457431627320097}{138866464374367295844465157} a^{2} + \frac{2319358617215477573710752}{138866464374367295844465157} a - \frac{39761475573374992557469143}{138866464374367295844465157}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2811089509780 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times \PSL(2,7)$ (as 21T22):
| A non-solvable group of order 504 |
| The 18 conjugacy class representatives for $C_3\times \PSL(2,7)$ |
| Character table for $C_3\times \PSL(2,7)$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.7.670188544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 24 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | $21$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 809 | Data not computed | ||||||