Normalized defining polynomial
\( x^{21} - 7 x^{20} - 112 x^{19} + 777 x^{18} + 4781 x^{17} - 33873 x^{16} - 95998 x^{15} + 737571 x^{14} + 879809 x^{13} - 8504538 x^{12} - 2454739 x^{11} + 52185714 x^{10} - 9150197 x^{9} - 173794943 x^{8} + 70295426 x^{7} + 311945270 x^{6} - 155083208 x^{5} - 285286645 x^{4} + 142672320 x^{3} + 109049556 x^{2} - 46336661 x - 5373811 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2007211581611376969912329733491048520227523013813921=7^{36}\cdot 31^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $277.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1519=7^{2}\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1519}(1,·)$, $\chi_{1519}(645,·)$, $\chi_{1519}(904,·)$, $\chi_{1519}(652,·)$, $\chi_{1519}(1296,·)$, $\chi_{1519}(211,·)$, $\chi_{1519}(470,·)$, $\chi_{1519}(1303,·)$, $\chi_{1519}(218,·)$, $\chi_{1519}(862,·)$, $\chi_{1519}(1121,·)$, $\chi_{1519}(36,·)$, $\chi_{1519}(869,·)$, $\chi_{1519}(1513,·)$, $\chi_{1519}(428,·)$, $\chi_{1519}(687,·)$, $\chi_{1519}(435,·)$, $\chi_{1519}(1079,·)$, $\chi_{1519}(1338,·)$, $\chi_{1519}(253,·)$, $\chi_{1519}(1086,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{1178} a^{18} + \frac{61}{589} a^{17} - \frac{60}{589} a^{16} - \frac{119}{589} a^{15} - \frac{68}{589} a^{14} + \frac{11}{38} a^{13} + \frac{91}{1178} a^{12} + \frac{223}{589} a^{11} + \frac{581}{1178} a^{10} + \frac{218}{589} a^{9} - \frac{509}{1178} a^{8} + \frac{565}{1178} a^{7} - \frac{27}{1178} a^{6} - \frac{1}{1178} a^{5} - \frac{165}{1178} a^{4} - \frac{1}{589} a^{3} + \frac{111}{589} a^{2} - \frac{581}{1178} a - \frac{61}{1178}$, $\frac{1}{36518} a^{19} - \frac{7}{18259} a^{18} + \frac{2835}{18259} a^{17} - \frac{2177}{36518} a^{16} + \frac{5727}{36518} a^{15} - \frac{1478}{18259} a^{14} + \frac{5424}{18259} a^{13} + \frac{6404}{18259} a^{12} + \frac{8249}{36518} a^{11} + \frac{7830}{18259} a^{10} - \frac{4281}{18259} a^{9} + \frac{6177}{36518} a^{8} - \frac{8543}{36518} a^{7} - \frac{4938}{18259} a^{6} - \frac{5610}{18259} a^{5} + \frac{3562}{18259} a^{4} - \frac{377}{1922} a^{3} + \frac{8468}{18259} a^{2} - \frac{4683}{36518} a - \frac{4687}{18259}$, $\frac{1}{112081883590544341866415727712652342561797920283605292382154579966} a^{20} + \frac{608720678811987766151961242722358363710254411391877372285061}{56040941795272170933207863856326171280898960141802646191077289983} a^{19} - \frac{13078308741782058908055012171211863589902753308799321774522971}{112081883590544341866415727712652342561797920283605292382154579966} a^{18} + \frac{4992281025632885891456704119330398453421475937109651120010362662}{56040941795272170933207863856326171280898960141802646191077289983} a^{17} + \frac{11377223095486394287778729797333892677706400610176776507190876467}{56040941795272170933207863856326171280898960141802646191077289983} a^{16} - \frac{10856785862297986421038003807185694828673102758161835529112978065}{56040941795272170933207863856326171280898960141802646191077289983} a^{15} - \frac{294326270246354996852240692188177963846142058969130201084626535}{1807772315976521643006705285687941009061256778767827296486364193} a^{14} + \frac{16161358822309362846960945939832266334103305566540623616540332512}{56040941795272170933207863856326171280898960141802646191077289983} a^{13} + \frac{23447026388030187010849581675567662034564039023149024437045427403}{112081883590544341866415727712652342561797920283605292382154579966} a^{12} - \frac{2906956653037936927704391586231072928749468218116339010043932000}{56040941795272170933207863856326171280898960141802646191077289983} a^{11} + \frac{27802725660850022934048870946652437816018245633490483528079041800}{56040941795272170933207863856326171280898960141802646191077289983} a^{10} - \frac{36962627987238299683085128094521984683456833737327933517163418251}{112081883590544341866415727712652342561797920283605292382154579966} a^{9} - \frac{9530576146962033231032543684395938996417111635763406188753074931}{112081883590544341866415727712652342561797920283605292382154579966} a^{8} - \frac{4701426166532634400600232729565928327861903715472322641030293708}{56040941795272170933207863856326171280898960141802646191077289983} a^{7} - \frac{2985515587729463141442635728504245997697319509116575846552052517}{56040941795272170933207863856326171280898960141802646191077289983} a^{6} - \frac{22250580018965699750586043984787267805159745647747160652496828824}{56040941795272170933207863856326171280898960141802646191077289983} a^{5} + \frac{9971298820751758803465387913679219543366161990297268329383567192}{56040941795272170933207863856326171280898960141802646191077289983} a^{4} + \frac{28939694872632025524285612164906025086829922960206038213214917257}{112081883590544341866415727712652342561797920283605292382154579966} a^{3} + \frac{1786191073705674315825141699537139336503889358953678108782540561}{56040941795272170933207863856326171280898960141802646191077289983} a^{2} - \frac{695111171860538531796257729938016092107284811043934404067638917}{56040941795272170933207863856326171280898960141802646191077289983} a - \frac{18034798628915286914923886447190033226205407159038670361057047319}{112081883590544341866415727712652342561797920283605292382154579966}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7030134349554524000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.961.1, 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | $21$ | $21$ | R | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | R | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $31$ | 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |