Normalized defining polynomial
\( x^{21} - 7 x^{20} - 84 x^{19} + 553 x^{18} + 2989 x^{17} - 17227 x^{16} - 59164 x^{15} + 268223 x^{14} + 701288 x^{13} - 2160550 x^{12} - 4812654 x^{11} + 8210370 x^{10} + 16233798 x^{9} - 11164454 x^{8} - 15807117 x^{7} + 9478959 x^{6} + 3446688 x^{5} - 2593367 x^{4} + 284319 x^{3} + 17031 x^{2} - 2184 x - 43 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19665423796876602841207515435602265497141248=2^{18}\cdot 7^{29}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $115.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2}$, $\frac{1}{10} a^{15} + \frac{1}{5} a^{13} + \frac{1}{5} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{2}{5} a^{7} - \frac{2}{5} a^{5} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{3}{10} a + \frac{1}{5}$, $\frac{1}{10} a^{16} + \frac{1}{5} a^{14} + \frac{1}{5} a^{13} + \frac{1}{5} a^{12} + \frac{1}{5} a^{11} - \frac{2}{5} a^{8} - \frac{2}{5} a^{6} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{3}{10} a^{2} + \frac{1}{5} a$, $\frac{1}{20} a^{17} - \frac{1}{20} a^{16} - \frac{1}{4} a^{14} - \frac{1}{5} a^{13} + \frac{3}{10} a^{12} - \frac{3}{10} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{3}{10} a^{6} - \frac{3}{10} a^{5} - \frac{1}{2} a^{4} - \frac{1}{20} a^{3} + \frac{3}{20} a^{2} - \frac{3}{10} a + \frac{1}{20}$, $\frac{1}{1300} a^{18} + \frac{6}{325} a^{17} - \frac{59}{1300} a^{16} - \frac{51}{1300} a^{15} - \frac{127}{1300} a^{14} + \frac{113}{650} a^{13} + \frac{31}{325} a^{12} - \frac{107}{650} a^{11} - \frac{124}{325} a^{10} + \frac{121}{325} a^{9} - \frac{28}{65} a^{8} + \frac{269}{650} a^{7} - \frac{19}{65} a^{6} + \frac{96}{325} a^{5} + \frac{77}{260} a^{4} + \frac{109}{650} a^{3} - \frac{113}{260} a^{2} + \frac{361}{1300} a - \frac{97}{1300}$, $\frac{1}{5200} a^{19} + \frac{1}{5200} a^{18} + \frac{3}{400} a^{17} - \frac{31}{1300} a^{16} - \frac{127}{2600} a^{15} + \frac{937}{5200} a^{14} + \frac{1233}{2600} a^{13} + \frac{937}{2600} a^{12} + \frac{783}{2600} a^{11} + \frac{12}{325} a^{10} + \frac{327}{1300} a^{9} - \frac{831}{2600} a^{8} + \frac{773}{2600} a^{7} + \frac{34}{325} a^{6} + \frac{1953}{5200} a^{5} + \frac{983}{5200} a^{4} + \frac{2091}{5200} a^{3} - \frac{277}{2600} a^{2} - \frac{27}{65} a - \frac{2319}{5200}$, $\frac{1}{418187861490821071749988109000372079416850935856400} a^{20} + \frac{3270958092945929587577964825236985398576269361}{418187861490821071749988109000372079416850935856400} a^{19} + \frac{892661171395590746256507896647398987392197911}{83637572298164214349997621800074415883370187171280} a^{18} - \frac{1719032729445599275961140558850451120733722549}{160841485188777335288456965000143107468019590714} a^{17} - \frac{5524543522591702628649928693565292523373185308959}{209093930745410535874994054500186039708425467928200} a^{16} + \frac{9153417697945523496511929106097500276579754265861}{418187861490821071749988109000372079416850935856400} a^{15} + \frac{44237127635794887846961681898622899072599098731957}{209093930745410535874994054500186039708425467928200} a^{14} + \frac{12000609485307920204486083979402515707228960194401}{41818786149082107174998810900037207941685093585640} a^{13} - \frac{7871988379285116146492053071573881100730392825513}{41818786149082107174998810900037207941685093585640} a^{12} - \frac{6331053987204516017716851701337036078235578657137}{26136741343176316984374256812523254963553183491025} a^{11} - \frac{9041930609230593426131637867667694284463994853017}{104546965372705267937497027250093019854212733964100} a^{10} + \frac{40864533076590567533169112884117058125204239376481}{209093930745410535874994054500186039708425467928200} a^{9} - \frac{53193521807214365350368710591804043882517797930427}{209093930745410535874994054500186039708425467928200} a^{8} - \frac{1541148752144256378041656744897448921745199404011}{52273482686352633968748513625046509927106366982050} a^{7} + \frac{167128883992618140393787111109683654342897912360393}{418187861490821071749988109000372079416850935856400} a^{6} + \frac{93992993681317898952032329159795037861749775087247}{418187861490821071749988109000372079416850935856400} a^{5} + \frac{12537179156896826576038446850356175660905327512427}{32168297037755467057691393000028621493603918142800} a^{4} - \frac{32766771848215088370628929020316405134836273510043}{209093930745410535874994054500186039708425467928200} a^{3} - \frac{3958778141260944709539107176328407889325103279889}{10454696537270526793749702725009301985421273396410} a^{2} - \frac{33500805743526507310138194903150934506360910937563}{418187861490821071749988109000372079416850935856400} a - \frac{25588693448030709641581909055319805963107543012149}{52273482686352633968748513625046509927106366982050}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1720832574690000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_7:(C_3\times D_7)$ (as 21T16):
| A solvable group of order 294 |
| The 22 conjugacy class representatives for $C_7:(C_3\times D_7)$ |
| Character table for $C_7:(C_3\times D_7)$ is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | $21$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.7.6.1 | $x^{7} - 13$ | $7$ | $1$ | $6$ | $D_{7}$ | $[\ ]_{7}^{2}$ | |
| 13.7.6.1 | $x^{7} - 13$ | $7$ | $1$ | $6$ | $D_{7}$ | $[\ ]_{7}^{2}$ | |