Normalized defining polynomial
\( x^{21} - 168 x^{19} + 11277 x^{17} - 399742 x^{15} - 8790 x^{14} + 8311674 x^{13} + 497658 x^{12} - 105527772 x^{11} - 10035984 x^{10} + 817061378 x^{9} + 81723726 x^{8} - 3701547615 x^{7} - 137390022 x^{6} + 8925763266 x^{5} - 1184426040 x^{4} - 9447929911 x^{3} + 3290393316 x^{2} + 1737020628 x - 295133736 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1951555699117213348169834432463016320890103201005568=2^{18}\cdot 3^{28}\cdot 7^{21}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $276.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{17} a^{14} + \frac{2}{17} a^{12} + \frac{6}{17} a^{10} - \frac{4}{17} a^{8} - \frac{1}{17} a^{7}$, $\frac{1}{34} a^{15} + \frac{1}{17} a^{13} + \frac{3}{17} a^{11} - \frac{2}{17} a^{9} + \frac{8}{17} a^{8} - \frac{1}{2} a$, $\frac{1}{34} a^{16} + \frac{1}{17} a^{12} - \frac{8}{17} a^{10} + \frac{8}{17} a^{9} + \frac{4}{17} a^{8} + \frac{1}{17} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{34} a^{17} + \frac{1}{17} a^{13} - \frac{8}{17} a^{11} + \frac{8}{17} a^{10} + \frac{4}{17} a^{9} + \frac{1}{17} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{11214356} a^{18} - \frac{1415}{329834} a^{17} - \frac{114153}{11214356} a^{16} + \frac{142}{9701} a^{15} - \frac{105159}{5607178} a^{14} + \frac{26448}{164917} a^{13} + \frac{339030}{2803589} a^{12} + \frac{30415}{63002} a^{11} + \frac{100441}{329834} a^{10} + \frac{56430}{164917} a^{9} - \frac{117157}{329834} a^{8} + \frac{69047}{164917} a^{7} + \frac{2036}{9701} a^{6} - \frac{133067}{329834} a^{5} - \frac{118375}{659668} a^{4} - \frac{3067}{19402} a^{3} + \frac{6713}{38804} a^{2} - \frac{200}{9701} a + \frac{1583}{9701}$, $\frac{1}{11214356} a^{19} + \frac{88759}{11214356} a^{17} - \frac{1}{19402} a^{16} - \frac{18265}{2803589} a^{15} + \frac{999}{164917} a^{14} + \frac{26485}{2803589} a^{13} - \frac{367073}{5607178} a^{12} + \frac{60213}{329834} a^{11} - \frac{34282}{164917} a^{10} - \frac{14051}{329834} a^{9} + \frac{75520}{164917} a^{8} + \frac{11156}{164917} a^{7} - \frac{100325}{329834} a^{6} - \frac{328903}{659668} a^{5} - \frac{3113}{9701} a^{4} + \frac{4393}{38804} a^{3} - \frac{2031}{19402} a^{2} - \frac{3751}{19402} a - \frac{4421}{9701}$, $\frac{1}{230631922189406639807685212979381314101735360745020138073630284} a^{20} + \frac{2564752472105138161967201523534118383394397824499705973}{57657980547351659951921303244845328525433840186255034518407571} a^{19} - \frac{298651290897214963106194248922114942624659090326062743}{115315961094703319903842606489690657050867680372510069036815142} a^{18} + \frac{1173459216796974240722608730734946354336124476512369919224417}{115315961094703319903842606489690657050867680372510069036815142} a^{17} + \frac{2846559263518440653142828454025991018497691986515713240928397}{230631922189406639807685212979381314101735360745020138073630284} a^{16} + \frac{251057436640728770423120868980715035548381972952149207308741}{57657980547351659951921303244845328525433840186255034518407571} a^{15} - \frac{2707281717580253816309260467721370723874265790291041182221547}{115315961094703319903842606489690657050867680372510069036815142} a^{14} - \frac{40713133004519896721151742638346966000021841908611065174346315}{115315961094703319903842606489690657050867680372510069036815142} a^{13} + \frac{28449389750549215608578865029224838091805379724966695470698447}{115315961094703319903842606489690657050867680372510069036815142} a^{12} - \frac{55382271862521450480258756688115665979637135621054472784910533}{115315961094703319903842606489690657050867680372510069036815142} a^{11} + \frac{1438211629458835654628227389195521824127661266765243487613962}{3391645914550097644230664896755607560319637658015002030494563} a^{10} - \frac{991504432088780948531459929481818072290410386931929683635889}{3391645914550097644230664896755607560319637658015002030494563} a^{9} + \frac{2827021023537777687978299436847828042345628814136310294198933}{6783291829100195288461329793511215120639275316030004060989126} a^{8} + \frac{874201445075714956409496788934743308430930701595666897095529}{6783291829100195288461329793511215120639275316030004060989126} a^{7} - \frac{2661488941221478640345855830035258530199146518694364022436007}{13566583658200390576922659587022430241278550632060008121978252} a^{6} + \frac{3195058857831471706595185150435504035223429516056422856266283}{6783291829100195288461329793511215120639275316030004060989126} a^{5} - \frac{659714243610419303449926191483617967811549511881287123416401}{3391645914550097644230664896755607560319637658015002030494563} a^{4} + \frac{135339959212250958740474929497844981222067787807069754167421}{399017166417658546380078223147718536508192665648823768293478} a^{3} + \frac{267775563179453464812037508743276789523568789068173013922897}{798034332835317092760156446295437073016385331297647536586956} a^{2} + \frac{23765061053055456653054816960686610714656105425322657184452}{199508583208829273190039111573859268254096332824411884146739} a - \frac{60440224615185121950988045880256180214808237538490146637076}{199508583208829273190039111573859268254096332824411884146739}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24991394430400000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 882 |
| The 26 conjugacy class representatives for t21n24 |
| Character table for t21n24 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 17.7.6.1 | $x^{7} - 17$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| 17.7.6.1 | $x^{7} - 17$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |