Properties

Label 21.21.195...568.2
Degree $21$
Signature $[21, 0]$
Discriminant $1.952\times 10^{51}$
Root discriminant \(276.95\)
Ramified primes $2,3,7,17$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_7:(C_3\times F_7)$ (as 21T24)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 168*x^19 + 11277*x^17 - 399742*x^15 - 8790*x^14 + 8311674*x^13 + 497658*x^12 - 105527772*x^11 - 10035984*x^10 + 817061378*x^9 + 81723726*x^8 - 3701547615*x^7 - 137390022*x^6 + 8925763266*x^5 - 1184426040*x^4 - 9447929911*x^3 + 3290393316*x^2 + 1737020628*x - 295133736)
 
gp: K = bnfinit(y^21 - 168*y^19 + 11277*y^17 - 399742*y^15 - 8790*y^14 + 8311674*y^13 + 497658*y^12 - 105527772*y^11 - 10035984*y^10 + 817061378*y^9 + 81723726*y^8 - 3701547615*y^7 - 137390022*y^6 + 8925763266*y^5 - 1184426040*y^4 - 9447929911*y^3 + 3290393316*y^2 + 1737020628*y - 295133736, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 168*x^19 + 11277*x^17 - 399742*x^15 - 8790*x^14 + 8311674*x^13 + 497658*x^12 - 105527772*x^11 - 10035984*x^10 + 817061378*x^9 + 81723726*x^8 - 3701547615*x^7 - 137390022*x^6 + 8925763266*x^5 - 1184426040*x^4 - 9447929911*x^3 + 3290393316*x^2 + 1737020628*x - 295133736);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 168*x^19 + 11277*x^17 - 399742*x^15 - 8790*x^14 + 8311674*x^13 + 497658*x^12 - 105527772*x^11 - 10035984*x^10 + 817061378*x^9 + 81723726*x^8 - 3701547615*x^7 - 137390022*x^6 + 8925763266*x^5 - 1184426040*x^4 - 9447929911*x^3 + 3290393316*x^2 + 1737020628*x - 295133736)
 

\( x^{21} - 168 x^{19} + 11277 x^{17} - 399742 x^{15} - 8790 x^{14} + 8311674 x^{13} + 497658 x^{12} + \cdots - 295133736 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $21$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[21, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1951555699117213348169834432463016320890103201005568\) \(\medspace = 2^{18}\cdot 3^{28}\cdot 7^{21}\cdot 17^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(276.95\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{4/3}7^{341/294}17^{6/7}\approx 937.6935307070016$
Ramified primes:   \(2\), \(3\), \(7\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{7}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{17}a^{14}+\frac{2}{17}a^{12}+\frac{6}{17}a^{10}-\frac{4}{17}a^{8}-\frac{1}{17}a^{7}$, $\frac{1}{34}a^{15}+\frac{1}{17}a^{13}+\frac{3}{17}a^{11}-\frac{2}{17}a^{9}+\frac{8}{17}a^{8}-\frac{1}{2}a$, $\frac{1}{34}a^{16}+\frac{1}{17}a^{12}-\frac{8}{17}a^{10}+\frac{8}{17}a^{9}+\frac{4}{17}a^{8}+\frac{1}{17}a^{7}-\frac{1}{2}a^{2}$, $\frac{1}{34}a^{17}+\frac{1}{17}a^{13}-\frac{8}{17}a^{11}+\frac{8}{17}a^{10}+\frac{4}{17}a^{9}+\frac{1}{17}a^{8}-\frac{1}{2}a^{3}$, $\frac{1}{11214356}a^{18}-\frac{1415}{329834}a^{17}-\frac{114153}{11214356}a^{16}+\frac{142}{9701}a^{15}-\frac{105159}{5607178}a^{14}+\frac{26448}{164917}a^{13}+\frac{339030}{2803589}a^{12}+\frac{30415}{63002}a^{11}+\frac{100441}{329834}a^{10}+\frac{56430}{164917}a^{9}-\frac{117157}{329834}a^{8}+\frac{69047}{164917}a^{7}+\frac{2036}{9701}a^{6}-\frac{133067}{329834}a^{5}-\frac{118375}{659668}a^{4}-\frac{3067}{19402}a^{3}+\frac{6713}{38804}a^{2}-\frac{200}{9701}a+\frac{1583}{9701}$, $\frac{1}{11214356}a^{19}+\frac{88759}{11214356}a^{17}-\frac{1}{19402}a^{16}-\frac{18265}{2803589}a^{15}+\frac{999}{164917}a^{14}+\frac{26485}{2803589}a^{13}-\frac{367073}{5607178}a^{12}+\frac{60213}{329834}a^{11}-\frac{34282}{164917}a^{10}-\frac{14051}{329834}a^{9}+\frac{75520}{164917}a^{8}+\frac{11156}{164917}a^{7}-\frac{100325}{329834}a^{6}-\frac{328903}{659668}a^{5}-\frac{3113}{9701}a^{4}+\frac{4393}{38804}a^{3}-\frac{2031}{19402}a^{2}-\frac{3751}{19402}a-\frac{4421}{9701}$, $\frac{1}{23\!\cdots\!84}a^{20}+\frac{25\!\cdots\!73}{57\!\cdots\!71}a^{19}-\frac{29\!\cdots\!43}{11\!\cdots\!42}a^{18}+\frac{11\!\cdots\!17}{11\!\cdots\!42}a^{17}+\frac{28\!\cdots\!97}{23\!\cdots\!84}a^{16}+\frac{25\!\cdots\!41}{57\!\cdots\!71}a^{15}-\frac{27\!\cdots\!47}{11\!\cdots\!42}a^{14}-\frac{40\!\cdots\!15}{11\!\cdots\!42}a^{13}+\frac{28\!\cdots\!47}{11\!\cdots\!42}a^{12}-\frac{55\!\cdots\!33}{11\!\cdots\!42}a^{11}+\frac{14\!\cdots\!62}{33\!\cdots\!63}a^{10}-\frac{99\!\cdots\!89}{33\!\cdots\!63}a^{9}+\frac{28\!\cdots\!33}{67\!\cdots\!26}a^{8}+\frac{87\!\cdots\!29}{67\!\cdots\!26}a^{7}-\frac{26\!\cdots\!07}{13\!\cdots\!52}a^{6}+\frac{31\!\cdots\!83}{67\!\cdots\!26}a^{5}-\frac{65\!\cdots\!01}{33\!\cdots\!63}a^{4}+\frac{13\!\cdots\!21}{39\!\cdots\!78}a^{3}+\frac{26\!\cdots\!97}{79\!\cdots\!56}a^{2}+\frac{23\!\cdots\!52}{19\!\cdots\!39}a-\frac{60\!\cdots\!76}{19\!\cdots\!39}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $20$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{11\!\cdots\!23}{13\!\cdots\!52}a^{20}-\frac{15\!\cdots\!30}{34\!\cdots\!63}a^{19}-\frac{17\!\cdots\!23}{13\!\cdots\!52}a^{18}+\frac{25\!\cdots\!80}{34\!\cdots\!63}a^{17}+\frac{56\!\cdots\!53}{69\!\cdots\!26}a^{16}-\frac{30\!\cdots\!77}{69\!\cdots\!26}a^{15}-\frac{91\!\cdots\!14}{34\!\cdots\!63}a^{14}+\frac{56\!\cdots\!99}{41\!\cdots\!78}a^{13}+\frac{33\!\cdots\!45}{69\!\cdots\!26}a^{12}-\frac{48\!\cdots\!15}{20\!\cdots\!39}a^{11}-\frac{21\!\cdots\!85}{41\!\cdots\!78}a^{10}+\frac{48\!\cdots\!65}{20\!\cdots\!39}a^{9}+\frac{63\!\cdots\!25}{20\!\cdots\!39}a^{8}-\frac{91\!\cdots\!59}{69\!\cdots\!26}a^{7}-\frac{73\!\cdots\!41}{82\!\cdots\!56}a^{6}+\frac{78\!\cdots\!54}{20\!\cdots\!39}a^{5}+\frac{40\!\cdots\!15}{82\!\cdots\!56}a^{4}-\frac{95\!\cdots\!42}{20\!\cdots\!39}a^{3}+\frac{29\!\cdots\!28}{20\!\cdots\!39}a^{2}+\frac{32\!\cdots\!49}{41\!\cdots\!78}a-\frac{28\!\cdots\!63}{20\!\cdots\!39}$, $\frac{13\!\cdots\!91}{13\!\cdots\!52}a^{20}-\frac{28\!\cdots\!51}{13\!\cdots\!52}a^{19}-\frac{52\!\cdots\!52}{34\!\cdots\!63}a^{18}+\frac{45\!\cdots\!93}{13\!\cdots\!52}a^{17}+\frac{13\!\cdots\!13}{13\!\cdots\!52}a^{16}-\frac{14\!\cdots\!31}{69\!\cdots\!26}a^{15}-\frac{20\!\cdots\!55}{69\!\cdots\!26}a^{14}+\frac{26\!\cdots\!23}{41\!\cdots\!78}a^{13}+\frac{18\!\cdots\!24}{34\!\cdots\!63}a^{12}-\frac{23\!\cdots\!76}{20\!\cdots\!39}a^{11}-\frac{11\!\cdots\!50}{20\!\cdots\!39}a^{10}+\frac{48\!\cdots\!29}{41\!\cdots\!78}a^{9}+\frac{13\!\cdots\!41}{41\!\cdots\!78}a^{8}-\frac{48\!\cdots\!17}{69\!\cdots\!26}a^{7}-\frac{75\!\cdots\!07}{82\!\cdots\!56}a^{6}+\frac{17\!\cdots\!71}{82\!\cdots\!56}a^{5}+\frac{32\!\cdots\!91}{41\!\cdots\!78}a^{4}-\frac{22\!\cdots\!65}{82\!\cdots\!56}a^{3}+\frac{56\!\cdots\!05}{82\!\cdots\!56}a^{2}+\frac{10\!\cdots\!65}{20\!\cdots\!39}a-\frac{17\!\cdots\!80}{20\!\cdots\!39}$, $\frac{33\!\cdots\!09}{23\!\cdots\!84}a^{20}-\frac{20\!\cdots\!33}{13\!\cdots\!52}a^{19}-\frac{13\!\cdots\!91}{57\!\cdots\!71}a^{18}+\frac{32\!\cdots\!19}{13\!\cdots\!52}a^{17}+\frac{34\!\cdots\!23}{23\!\cdots\!84}a^{16}-\frac{49\!\cdots\!51}{33\!\cdots\!63}a^{15}-\frac{56\!\cdots\!13}{11\!\cdots\!42}a^{14}+\frac{51\!\cdots\!97}{11\!\cdots\!42}a^{13}+\frac{31\!\cdots\!93}{33\!\cdots\!63}a^{12}-\frac{25\!\cdots\!70}{33\!\cdots\!63}a^{11}-\frac{34\!\cdots\!57}{33\!\cdots\!63}a^{10}+\frac{45\!\cdots\!87}{67\!\cdots\!26}a^{9}+\frac{44\!\cdots\!49}{67\!\cdots\!26}a^{8}-\frac{21\!\cdots\!41}{67\!\cdots\!26}a^{7}-\frac{31\!\cdots\!97}{13\!\cdots\!52}a^{6}+\frac{55\!\cdots\!89}{79\!\cdots\!56}a^{5}+\frac{14\!\cdots\!69}{39\!\cdots\!78}a^{4}-\frac{38\!\cdots\!63}{79\!\cdots\!56}a^{3}-\frac{12\!\cdots\!57}{79\!\cdots\!56}a^{2}-\frac{18\!\cdots\!11}{39\!\cdots\!78}a+\frac{17\!\cdots\!27}{19\!\cdots\!39}$, $\frac{44\!\cdots\!27}{23\!\cdots\!84}a^{20}-\frac{90\!\cdots\!57}{11\!\cdots\!42}a^{19}-\frac{10\!\cdots\!55}{33\!\cdots\!63}a^{18}+\frac{14\!\cdots\!05}{11\!\cdots\!42}a^{17}+\frac{44\!\cdots\!03}{23\!\cdots\!84}a^{16}-\frac{87\!\cdots\!59}{11\!\cdots\!42}a^{15}-\frac{71\!\cdots\!83}{11\!\cdots\!42}a^{14}+\frac{27\!\cdots\!47}{11\!\cdots\!42}a^{13}+\frac{12\!\cdots\!17}{11\!\cdots\!42}a^{12}-\frac{47\!\cdots\!97}{11\!\cdots\!42}a^{11}-\frac{39\!\cdots\!26}{33\!\cdots\!63}a^{10}+\frac{14\!\cdots\!13}{33\!\cdots\!63}a^{9}+\frac{45\!\cdots\!01}{67\!\cdots\!26}a^{8}-\frac{15\!\cdots\!17}{67\!\cdots\!26}a^{7}-\frac{25\!\cdots\!25}{13\!\cdots\!52}a^{6}+\frac{23\!\cdots\!17}{33\!\cdots\!63}a^{5}+\frac{61\!\cdots\!53}{67\!\cdots\!26}a^{4}-\frac{34\!\cdots\!95}{39\!\cdots\!78}a^{3}+\frac{24\!\cdots\!59}{79\!\cdots\!56}a^{2}+\frac{56\!\cdots\!07}{39\!\cdots\!78}a-\frac{79\!\cdots\!37}{19\!\cdots\!39}$, $\frac{16\!\cdots\!73}{23\!\cdots\!84}a^{20}+\frac{18\!\cdots\!65}{67\!\cdots\!26}a^{19}-\frac{13\!\cdots\!27}{11\!\cdots\!42}a^{18}-\frac{27\!\cdots\!89}{67\!\cdots\!26}a^{17}+\frac{15\!\cdots\!15}{23\!\cdots\!84}a^{16}+\frac{16\!\cdots\!61}{67\!\cdots\!26}a^{15}-\frac{23\!\cdots\!37}{11\!\cdots\!42}a^{14}-\frac{84\!\cdots\!21}{11\!\cdots\!42}a^{13}+\frac{38\!\cdots\!71}{11\!\cdots\!42}a^{12}+\frac{12\!\cdots\!89}{10\!\cdots\!38}a^{11}-\frac{10\!\cdots\!11}{33\!\cdots\!63}a^{10}-\frac{39\!\cdots\!90}{33\!\cdots\!63}a^{9}+\frac{10\!\cdots\!13}{67\!\cdots\!26}a^{8}+\frac{40\!\cdots\!71}{67\!\cdots\!26}a^{7}-\frac{54\!\cdots\!07}{13\!\cdots\!52}a^{6}-\frac{50\!\cdots\!23}{33\!\cdots\!63}a^{5}+\frac{22\!\cdots\!16}{33\!\cdots\!63}a^{4}+\frac{62\!\cdots\!65}{39\!\cdots\!78}a^{3}-\frac{55\!\cdots\!29}{79\!\cdots\!56}a^{2}-\frac{12\!\cdots\!01}{39\!\cdots\!78}a+\frac{10\!\cdots\!39}{19\!\cdots\!39}$, $\frac{29\!\cdots\!85}{23\!\cdots\!84}a^{20}+\frac{14\!\cdots\!75}{11\!\cdots\!42}a^{19}-\frac{13\!\cdots\!33}{57\!\cdots\!71}a^{18}-\frac{11\!\cdots\!32}{57\!\cdots\!71}a^{17}+\frac{39\!\cdots\!85}{23\!\cdots\!84}a^{16}+\frac{74\!\cdots\!16}{57\!\cdots\!71}a^{15}-\frac{78\!\cdots\!79}{11\!\cdots\!42}a^{14}-\frac{49\!\cdots\!75}{11\!\cdots\!42}a^{13}+\frac{18\!\cdots\!57}{11\!\cdots\!42}a^{12}+\frac{93\!\cdots\!69}{11\!\cdots\!42}a^{11}-\frac{75\!\cdots\!65}{33\!\cdots\!63}a^{10}-\frac{31\!\cdots\!66}{33\!\cdots\!63}a^{9}+\frac{12\!\cdots\!65}{67\!\cdots\!26}a^{8}+\frac{40\!\cdots\!29}{67\!\cdots\!26}a^{7}-\frac{11\!\cdots\!83}{13\!\cdots\!52}a^{6}-\frac{70\!\cdots\!01}{33\!\cdots\!63}a^{5}+\frac{13\!\cdots\!87}{67\!\cdots\!26}a^{4}+\frac{58\!\cdots\!98}{19\!\cdots\!39}a^{3}-\frac{15\!\cdots\!27}{79\!\cdots\!56}a^{2}-\frac{14\!\cdots\!87}{19\!\cdots\!39}a+\frac{27\!\cdots\!38}{19\!\cdots\!39}$, $\frac{35\!\cdots\!15}{23\!\cdots\!84}a^{20}-\frac{90\!\cdots\!73}{23\!\cdots\!84}a^{19}-\frac{57\!\cdots\!93}{23\!\cdots\!84}a^{18}+\frac{14\!\cdots\!71}{23\!\cdots\!84}a^{17}+\frac{90\!\cdots\!76}{57\!\cdots\!71}a^{16}-\frac{46\!\cdots\!63}{11\!\cdots\!42}a^{15}-\frac{29\!\cdots\!45}{57\!\cdots\!71}a^{14}+\frac{14\!\cdots\!15}{11\!\cdots\!42}a^{13}+\frac{54\!\cdots\!47}{57\!\cdots\!71}a^{12}-\frac{26\!\cdots\!95}{11\!\cdots\!42}a^{11}-\frac{68\!\cdots\!87}{67\!\cdots\!26}a^{10}+\frac{16\!\cdots\!77}{67\!\cdots\!26}a^{9}+\frac{20\!\cdots\!08}{33\!\cdots\!63}a^{8}-\frac{96\!\cdots\!63}{67\!\cdots\!26}a^{7}-\frac{25\!\cdots\!51}{13\!\cdots\!52}a^{6}+\frac{60\!\cdots\!03}{13\!\cdots\!52}a^{5}+\frac{24\!\cdots\!37}{13\!\cdots\!52}a^{4}-\frac{46\!\cdots\!03}{79\!\cdots\!56}a^{3}+\frac{50\!\cdots\!91}{39\!\cdots\!78}a^{2}+\frac{21\!\cdots\!17}{19\!\cdots\!39}a-\frac{27\!\cdots\!45}{19\!\cdots\!39}$, $\frac{35\!\cdots\!77}{11\!\cdots\!42}a^{20}-\frac{19\!\cdots\!89}{23\!\cdots\!84}a^{19}-\frac{28\!\cdots\!76}{57\!\cdots\!71}a^{18}+\frac{31\!\cdots\!35}{23\!\cdots\!84}a^{17}+\frac{35\!\cdots\!17}{11\!\cdots\!42}a^{16}-\frac{49\!\cdots\!42}{57\!\cdots\!71}a^{15}-\frac{57\!\cdots\!12}{57\!\cdots\!71}a^{14}+\frac{15\!\cdots\!71}{57\!\cdots\!71}a^{13}+\frac{20\!\cdots\!55}{11\!\cdots\!42}a^{12}-\frac{55\!\cdots\!33}{11\!\cdots\!42}a^{11}-\frac{64\!\cdots\!10}{33\!\cdots\!63}a^{10}+\frac{33\!\cdots\!67}{67\!\cdots\!26}a^{9}+\frac{38\!\cdots\!99}{33\!\cdots\!63}a^{8}-\frac{97\!\cdots\!20}{33\!\cdots\!63}a^{7}-\frac{11\!\cdots\!82}{33\!\cdots\!63}a^{6}+\frac{11\!\cdots\!75}{13\!\cdots\!52}a^{5}+\frac{98\!\cdots\!22}{33\!\cdots\!63}a^{4}-\frac{90\!\cdots\!75}{79\!\cdots\!56}a^{3}+\frac{11\!\cdots\!99}{39\!\cdots\!78}a^{2}+\frac{78\!\cdots\!21}{39\!\cdots\!78}a-\frac{63\!\cdots\!87}{19\!\cdots\!39}$, $\frac{57\!\cdots\!75}{23\!\cdots\!84}a^{20}-\frac{41\!\cdots\!98}{57\!\cdots\!71}a^{19}-\frac{91\!\cdots\!83}{23\!\cdots\!84}a^{18}+\frac{66\!\cdots\!35}{57\!\cdots\!71}a^{17}+\frac{14\!\cdots\!65}{57\!\cdots\!71}a^{16}-\frac{82\!\cdots\!41}{11\!\cdots\!42}a^{15}-\frac{45\!\cdots\!00}{57\!\cdots\!71}a^{14}+\frac{26\!\cdots\!29}{11\!\cdots\!42}a^{13}+\frac{16\!\cdots\!59}{11\!\cdots\!42}a^{12}-\frac{22\!\cdots\!68}{57\!\cdots\!71}a^{11}-\frac{10\!\cdots\!75}{67\!\cdots\!26}a^{10}+\frac{13\!\cdots\!86}{33\!\cdots\!63}a^{9}+\frac{29\!\cdots\!70}{33\!\cdots\!63}a^{8}-\frac{15\!\cdots\!05}{67\!\cdots\!26}a^{7}-\frac{38\!\cdots\!25}{15\!\cdots\!68}a^{6}+\frac{23\!\cdots\!99}{33\!\cdots\!63}a^{5}+\frac{28\!\cdots\!99}{13\!\cdots\!52}a^{4}-\frac{17\!\cdots\!08}{19\!\cdots\!39}a^{3}+\frac{92\!\cdots\!95}{39\!\cdots\!78}a^{2}+\frac{63\!\cdots\!15}{39\!\cdots\!78}a-\frac{51\!\cdots\!02}{19\!\cdots\!39}$, $\frac{29\!\cdots\!83}{23\!\cdots\!84}a^{20}-\frac{10\!\cdots\!15}{57\!\cdots\!71}a^{19}-\frac{12\!\cdots\!72}{57\!\cdots\!71}a^{18}+\frac{33\!\cdots\!21}{11\!\cdots\!42}a^{17}+\frac{35\!\cdots\!49}{23\!\cdots\!84}a^{16}-\frac{10\!\cdots\!88}{57\!\cdots\!71}a^{15}-\frac{63\!\cdots\!59}{11\!\cdots\!42}a^{14}+\frac{60\!\cdots\!83}{11\!\cdots\!42}a^{13}+\frac{13\!\cdots\!53}{11\!\cdots\!42}a^{12}-\frac{93\!\cdots\!17}{10\!\cdots\!38}a^{11}-\frac{46\!\cdots\!63}{33\!\cdots\!63}a^{10}+\frac{28\!\cdots\!62}{33\!\cdots\!63}a^{9}+\frac{37\!\cdots\!73}{39\!\cdots\!78}a^{8}-\frac{30\!\cdots\!03}{67\!\cdots\!26}a^{7}-\frac{43\!\cdots\!17}{13\!\cdots\!52}a^{6}+\frac{82\!\cdots\!37}{67\!\cdots\!26}a^{5}+\frac{19\!\cdots\!05}{67\!\cdots\!26}a^{4}-\frac{55\!\cdots\!87}{39\!\cdots\!78}a^{3}+\frac{25\!\cdots\!69}{79\!\cdots\!56}a^{2}+\frac{42\!\cdots\!06}{19\!\cdots\!39}a-\frac{44\!\cdots\!35}{19\!\cdots\!39}$, $\frac{64\!\cdots\!16}{57\!\cdots\!71}a^{20}-\frac{67\!\cdots\!77}{23\!\cdots\!84}a^{19}-\frac{10\!\cdots\!03}{57\!\cdots\!71}a^{18}+\frac{10\!\cdots\!43}{23\!\cdots\!84}a^{17}+\frac{63\!\cdots\!66}{57\!\cdots\!71}a^{16}-\frac{16\!\cdots\!11}{57\!\cdots\!71}a^{15}-\frac{20\!\cdots\!00}{57\!\cdots\!71}a^{14}+\frac{53\!\cdots\!69}{57\!\cdots\!71}a^{13}+\frac{71\!\cdots\!27}{11\!\cdots\!42}a^{12}-\frac{18\!\cdots\!61}{11\!\cdots\!42}a^{11}-\frac{21\!\cdots\!15}{33\!\cdots\!63}a^{10}+\frac{11\!\cdots\!29}{67\!\cdots\!26}a^{9}+\frac{75\!\cdots\!20}{19\!\cdots\!39}a^{8}-\frac{32\!\cdots\!90}{33\!\cdots\!63}a^{7}-\frac{73\!\cdots\!93}{67\!\cdots\!26}a^{6}+\frac{38\!\cdots\!47}{13\!\cdots\!52}a^{5}+\frac{30\!\cdots\!75}{33\!\cdots\!63}a^{4}-\frac{29\!\cdots\!51}{79\!\cdots\!56}a^{3}+\frac{18\!\cdots\!59}{19\!\cdots\!39}a^{2}+\frac{26\!\cdots\!71}{39\!\cdots\!78}a-\frac{20\!\cdots\!39}{19\!\cdots\!39}$, $\frac{18\!\cdots\!09}{11\!\cdots\!42}a^{20}-\frac{26\!\cdots\!30}{57\!\cdots\!71}a^{19}-\frac{29\!\cdots\!55}{11\!\cdots\!42}a^{18}+\frac{86\!\cdots\!97}{11\!\cdots\!42}a^{17}+\frac{17\!\cdots\!23}{11\!\cdots\!42}a^{16}-\frac{54\!\cdots\!69}{11\!\cdots\!42}a^{15}-\frac{27\!\cdots\!40}{57\!\cdots\!71}a^{14}+\frac{87\!\cdots\!01}{57\!\cdots\!71}a^{13}+\frac{46\!\cdots\!25}{57\!\cdots\!71}a^{12}-\frac{15\!\cdots\!99}{57\!\cdots\!71}a^{11}-\frac{26\!\cdots\!17}{33\!\cdots\!63}a^{10}+\frac{56\!\cdots\!89}{19\!\cdots\!39}a^{9}+\frac{14\!\cdots\!72}{33\!\cdots\!63}a^{8}-\frac{57\!\cdots\!11}{33\!\cdots\!63}a^{7}-\frac{64\!\cdots\!25}{67\!\cdots\!26}a^{6}+\frac{18\!\cdots\!26}{33\!\cdots\!63}a^{5}-\frac{92\!\cdots\!55}{67\!\cdots\!26}a^{4}-\frac{28\!\cdots\!47}{39\!\cdots\!78}a^{3}+\frac{10\!\cdots\!05}{39\!\cdots\!78}a^{2}+\frac{56\!\cdots\!85}{39\!\cdots\!78}a-\frac{48\!\cdots\!34}{19\!\cdots\!39}$, $\frac{70\!\cdots\!15}{23\!\cdots\!84}a^{20}-\frac{79\!\cdots\!31}{23\!\cdots\!84}a^{19}-\frac{55\!\cdots\!97}{11\!\cdots\!42}a^{18}+\frac{13\!\cdots\!07}{23\!\cdots\!84}a^{17}+\frac{68\!\cdots\!45}{23\!\cdots\!84}a^{16}-\frac{43\!\cdots\!97}{11\!\cdots\!42}a^{15}-\frac{10\!\cdots\!79}{11\!\cdots\!42}a^{14}+\frac{14\!\cdots\!69}{11\!\cdots\!42}a^{13}+\frac{93\!\cdots\!18}{57\!\cdots\!71}a^{12}-\frac{12\!\cdots\!40}{57\!\cdots\!71}a^{11}-\frac{55\!\cdots\!07}{33\!\cdots\!63}a^{10}+\frac{15\!\cdots\!55}{67\!\cdots\!26}a^{9}+\frac{62\!\cdots\!25}{67\!\cdots\!26}a^{8}-\frac{96\!\cdots\!13}{67\!\cdots\!26}a^{7}-\frac{35\!\cdots\!19}{13\!\cdots\!52}a^{6}+\frac{62\!\cdots\!95}{13\!\cdots\!52}a^{5}+\frac{83\!\cdots\!08}{33\!\cdots\!63}a^{4}-\frac{49\!\cdots\!07}{79\!\cdots\!56}a^{3}+\frac{10\!\cdots\!09}{79\!\cdots\!56}a^{2}+\frac{21\!\cdots\!60}{19\!\cdots\!39}a-\frac{33\!\cdots\!19}{19\!\cdots\!39}$, $\frac{13\!\cdots\!29}{23\!\cdots\!84}a^{20}-\frac{47\!\cdots\!89}{23\!\cdots\!84}a^{19}-\frac{10\!\cdots\!65}{11\!\cdots\!42}a^{18}+\frac{74\!\cdots\!33}{23\!\cdots\!84}a^{17}+\frac{12\!\cdots\!85}{23\!\cdots\!84}a^{16}-\frac{22\!\cdots\!81}{11\!\cdots\!42}a^{15}-\frac{19\!\cdots\!75}{11\!\cdots\!42}a^{14}+\frac{69\!\cdots\!83}{11\!\cdots\!42}a^{13}+\frac{16\!\cdots\!10}{57\!\cdots\!71}a^{12}-\frac{58\!\cdots\!18}{57\!\cdots\!71}a^{11}-\frac{98\!\cdots\!51}{33\!\cdots\!63}a^{10}+\frac{66\!\cdots\!83}{67\!\cdots\!26}a^{9}+\frac{11\!\cdots\!05}{67\!\cdots\!26}a^{8}-\frac{36\!\cdots\!57}{67\!\cdots\!26}a^{7}-\frac{60\!\cdots\!69}{13\!\cdots\!52}a^{6}+\frac{20\!\cdots\!29}{13\!\cdots\!52}a^{5}+\frac{10\!\cdots\!03}{33\!\cdots\!63}a^{4}-\frac{14\!\cdots\!17}{79\!\cdots\!56}a^{3}+\frac{39\!\cdots\!33}{79\!\cdots\!56}a^{2}+\frac{64\!\cdots\!57}{19\!\cdots\!39}a-\frac{10\!\cdots\!84}{19\!\cdots\!39}$, $\frac{11\!\cdots\!53}{23\!\cdots\!84}a^{20}-\frac{24\!\cdots\!99}{23\!\cdots\!84}a^{19}-\frac{18\!\cdots\!65}{23\!\cdots\!84}a^{18}+\frac{39\!\cdots\!27}{23\!\cdots\!84}a^{17}+\frac{55\!\cdots\!93}{11\!\cdots\!42}a^{16}-\frac{62\!\cdots\!77}{57\!\cdots\!71}a^{15}-\frac{88\!\cdots\!71}{57\!\cdots\!71}a^{14}+\frac{39\!\cdots\!73}{11\!\cdots\!42}a^{13}+\frac{15\!\cdots\!36}{57\!\cdots\!71}a^{12}-\frac{68\!\cdots\!79}{11\!\cdots\!42}a^{11}-\frac{18\!\cdots\!41}{67\!\cdots\!26}a^{10}+\frac{40\!\cdots\!15}{67\!\cdots\!26}a^{9}+\frac{54\!\cdots\!09}{33\!\cdots\!63}a^{8}-\frac{23\!\cdots\!07}{67\!\cdots\!26}a^{7}-\frac{62\!\cdots\!09}{13\!\cdots\!52}a^{6}+\frac{14\!\cdots\!25}{13\!\cdots\!52}a^{5}+\frac{54\!\cdots\!93}{13\!\cdots\!52}a^{4}-\frac{10\!\cdots\!39}{79\!\cdots\!56}a^{3}+\frac{59\!\cdots\!22}{19\!\cdots\!39}a^{2}+\frac{90\!\cdots\!59}{39\!\cdots\!78}a-\frac{71\!\cdots\!59}{19\!\cdots\!39}$, $\frac{86\!\cdots\!63}{23\!\cdots\!84}a^{20}+\frac{67\!\cdots\!89}{57\!\cdots\!71}a^{19}-\frac{13\!\cdots\!93}{23\!\cdots\!84}a^{18}-\frac{20\!\cdots\!99}{11\!\cdots\!42}a^{17}+\frac{20\!\cdots\!64}{57\!\cdots\!71}a^{16}+\frac{12\!\cdots\!59}{11\!\cdots\!42}a^{15}-\frac{55\!\cdots\!67}{52\!\cdots\!19}a^{14}-\frac{36\!\cdots\!41}{11\!\cdots\!42}a^{13}+\frac{19\!\cdots\!47}{11\!\cdots\!42}a^{12}+\frac{30\!\cdots\!64}{57\!\cdots\!71}a^{11}-\frac{10\!\cdots\!95}{67\!\cdots\!26}a^{10}-\frac{16\!\cdots\!76}{33\!\cdots\!63}a^{9}+\frac{27\!\cdots\!76}{33\!\cdots\!63}a^{8}+\frac{17\!\cdots\!51}{67\!\cdots\!26}a^{7}-\frac{29\!\cdots\!65}{13\!\cdots\!52}a^{6}-\frac{21\!\cdots\!19}{33\!\cdots\!63}a^{5}+\frac{45\!\cdots\!29}{13\!\cdots\!52}a^{4}+\frac{25\!\cdots\!57}{39\!\cdots\!78}a^{3}-\frac{12\!\cdots\!85}{39\!\cdots\!78}a^{2}-\frac{50\!\cdots\!89}{39\!\cdots\!78}a+\frac{45\!\cdots\!06}{19\!\cdots\!39}$, $\frac{28\!\cdots\!23}{23\!\cdots\!84}a^{20}+\frac{49\!\cdots\!98}{57\!\cdots\!71}a^{19}-\frac{16\!\cdots\!37}{79\!\cdots\!56}a^{18}-\frac{76\!\cdots\!24}{52\!\cdots\!19}a^{17}+\frac{15\!\cdots\!79}{11\!\cdots\!42}a^{16}+\frac{11\!\cdots\!75}{11\!\cdots\!42}a^{15}-\frac{26\!\cdots\!95}{57\!\cdots\!71}a^{14}-\frac{42\!\cdots\!87}{11\!\cdots\!42}a^{13}+\frac{10\!\cdots\!89}{11\!\cdots\!42}a^{12}+\frac{46\!\cdots\!79}{57\!\cdots\!71}a^{11}-\frac{76\!\cdots\!79}{67\!\cdots\!26}a^{10}-\frac{36\!\cdots\!77}{33\!\cdots\!63}a^{9}+\frac{27\!\cdots\!58}{33\!\cdots\!63}a^{8}+\frac{55\!\cdots\!63}{67\!\cdots\!26}a^{7}-\frac{43\!\cdots\!77}{13\!\cdots\!52}a^{6}-\frac{10\!\cdots\!85}{33\!\cdots\!63}a^{5}+\frac{84\!\cdots\!33}{13\!\cdots\!52}a^{4}+\frac{98\!\cdots\!81}{19\!\cdots\!39}a^{3}-\frac{93\!\cdots\!56}{19\!\cdots\!39}a^{2}-\frac{57\!\cdots\!17}{39\!\cdots\!78}a+\frac{58\!\cdots\!23}{19\!\cdots\!39}$, $\frac{59\!\cdots\!77}{23\!\cdots\!84}a^{20}-\frac{50\!\cdots\!69}{23\!\cdots\!84}a^{19}-\frac{46\!\cdots\!33}{11\!\cdots\!42}a^{18}+\frac{82\!\cdots\!23}{23\!\cdots\!84}a^{17}+\frac{56\!\cdots\!79}{23\!\cdots\!84}a^{16}-\frac{26\!\cdots\!85}{11\!\cdots\!42}a^{15}-\frac{87\!\cdots\!61}{11\!\cdots\!42}a^{14}+\frac{87\!\cdots\!05}{11\!\cdots\!42}a^{13}+\frac{74\!\cdots\!22}{57\!\cdots\!71}a^{12}-\frac{46\!\cdots\!39}{33\!\cdots\!63}a^{11}-\frac{43\!\cdots\!37}{33\!\cdots\!63}a^{10}+\frac{97\!\cdots\!77}{67\!\cdots\!26}a^{9}+\frac{46\!\cdots\!25}{67\!\cdots\!26}a^{8}-\frac{59\!\cdots\!73}{67\!\cdots\!26}a^{7}-\frac{24\!\cdots\!37}{13\!\cdots\!52}a^{6}+\frac{40\!\cdots\!41}{13\!\cdots\!52}a^{5}+\frac{30\!\cdots\!89}{19\!\cdots\!39}a^{4}-\frac{32\!\cdots\!67}{79\!\cdots\!56}a^{3}+\frac{88\!\cdots\!31}{79\!\cdots\!56}a^{2}+\frac{12\!\cdots\!14}{19\!\cdots\!39}a-\frac{21\!\cdots\!86}{19\!\cdots\!39}$, $\frac{10\!\cdots\!45}{11\!\cdots\!42}a^{20}-\frac{14\!\cdots\!01}{52\!\cdots\!19}a^{19}-\frac{34\!\cdots\!03}{23\!\cdots\!84}a^{18}+\frac{50\!\cdots\!57}{11\!\cdots\!42}a^{17}+\frac{21\!\cdots\!13}{23\!\cdots\!84}a^{16}-\frac{17\!\cdots\!34}{64\!\cdots\!39}a^{15}-\frac{34\!\cdots\!97}{11\!\cdots\!42}a^{14}+\frac{49\!\cdots\!20}{57\!\cdots\!71}a^{13}+\frac{31\!\cdots\!83}{57\!\cdots\!71}a^{12}-\frac{17\!\cdots\!85}{11\!\cdots\!42}a^{11}-\frac{38\!\cdots\!17}{67\!\cdots\!26}a^{10}+\frac{52\!\cdots\!64}{33\!\cdots\!63}a^{9}+\frac{22\!\cdots\!11}{67\!\cdots\!26}a^{8}-\frac{30\!\cdots\!79}{33\!\cdots\!63}a^{7}-\frac{66\!\cdots\!79}{67\!\cdots\!26}a^{6}+\frac{18\!\cdots\!77}{67\!\cdots\!26}a^{5}+\frac{10\!\cdots\!29}{13\!\cdots\!52}a^{4}-\frac{13\!\cdots\!41}{39\!\cdots\!78}a^{3}+\frac{70\!\cdots\!47}{79\!\cdots\!56}a^{2}+\frac{12\!\cdots\!56}{19\!\cdots\!39}a-\frac{19\!\cdots\!41}{19\!\cdots\!39}$, $\frac{64\!\cdots\!37}{23\!\cdots\!84}a^{20}+\frac{62\!\cdots\!71}{23\!\cdots\!84}a^{19}-\frac{27\!\cdots\!59}{57\!\cdots\!71}a^{18}-\frac{10\!\cdots\!81}{23\!\cdots\!84}a^{17}+\frac{72\!\cdots\!43}{23\!\cdots\!84}a^{16}+\frac{17\!\cdots\!53}{57\!\cdots\!71}a^{15}-\frac{12\!\cdots\!33}{11\!\cdots\!42}a^{14}-\frac{12\!\cdots\!07}{11\!\cdots\!42}a^{13}+\frac{12\!\cdots\!92}{57\!\cdots\!71}a^{12}+\frac{77\!\cdots\!03}{33\!\cdots\!63}a^{11}-\frac{94\!\cdots\!86}{33\!\cdots\!63}a^{10}-\frac{19\!\cdots\!87}{67\!\cdots\!26}a^{9}+\frac{13\!\cdots\!13}{67\!\cdots\!26}a^{8}+\frac{14\!\cdots\!01}{67\!\cdots\!26}a^{7}-\frac{11\!\cdots\!69}{13\!\cdots\!52}a^{6}-\frac{11\!\cdots\!95}{13\!\cdots\!52}a^{5}+\frac{70\!\cdots\!65}{39\!\cdots\!78}a^{4}+\frac{10\!\cdots\!13}{79\!\cdots\!56}a^{3}-\frac{11\!\cdots\!37}{79\!\cdots\!56}a^{2}-\frac{17\!\cdots\!89}{39\!\cdots\!78}a+\frac{18\!\cdots\!20}{19\!\cdots\!39}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 24991394430400000000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{21}\cdot(2\pi)^{0}\cdot 24991394430400000000 \cdot 1}{2\cdot\sqrt{1951555699117213348169834432463016320890103201005568}}\cr\approx \mathstrut & 0.593198339531653 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^21 - 168*x^19 + 11277*x^17 - 399742*x^15 - 8790*x^14 + 8311674*x^13 + 497658*x^12 - 105527772*x^11 - 10035984*x^10 + 817061378*x^9 + 81723726*x^8 - 3701547615*x^7 - 137390022*x^6 + 8925763266*x^5 - 1184426040*x^4 - 9447929911*x^3 + 3290393316*x^2 + 1737020628*x - 295133736)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^21 - 168*x^19 + 11277*x^17 - 399742*x^15 - 8790*x^14 + 8311674*x^13 + 497658*x^12 - 105527772*x^11 - 10035984*x^10 + 817061378*x^9 + 81723726*x^8 - 3701547615*x^7 - 137390022*x^6 + 8925763266*x^5 - 1184426040*x^4 - 9447929911*x^3 + 3290393316*x^2 + 1737020628*x - 295133736, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^21 - 168*x^19 + 11277*x^17 - 399742*x^15 - 8790*x^14 + 8311674*x^13 + 497658*x^12 - 105527772*x^11 - 10035984*x^10 + 817061378*x^9 + 81723726*x^8 - 3701547615*x^7 - 137390022*x^6 + 8925763266*x^5 - 1184426040*x^4 - 9447929911*x^3 + 3290393316*x^2 + 1737020628*x - 295133736);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 168*x^19 + 11277*x^17 - 399742*x^15 - 8790*x^14 + 8311674*x^13 + 497658*x^12 - 105527772*x^11 - 10035984*x^10 + 817061378*x^9 + 81723726*x^8 - 3701547615*x^7 - 137390022*x^6 + 8925763266*x^5 - 1184426040*x^4 - 9447929911*x^3 + 3290393316*x^2 + 1737020628*x - 295133736);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_7:(C_3\times F_7)$ (as 21T24):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 882
The 26 conjugacy class representatives for $C_7:(C_3\times F_7)$
Character table for $C_7:(C_3\times F_7)$

Intermediate fields

\(\Q(\zeta_{9})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 21 sibling: data not computed
Degree 42 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }^{3}{,}\,{\href{/padicField/5.3.0.1}{3} }$ R ${\href{/padicField/11.6.0.1}{6} }^{3}{,}\,{\href{/padicField/11.3.0.1}{3} }$ ${\href{/padicField/13.6.0.1}{6} }^{3}{,}\,{\href{/padicField/13.3.0.1}{3} }$ R ${\href{/padicField/19.3.0.1}{3} }^{6}{,}\,{\href{/padicField/19.1.0.1}{1} }^{3}$ ${\href{/padicField/23.6.0.1}{6} }^{3}{,}\,{\href{/padicField/23.3.0.1}{3} }$ $21$ ${\href{/padicField/31.3.0.1}{3} }^{7}$ ${\href{/padicField/37.3.0.1}{3} }^{6}{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ ${\href{/padicField/41.6.0.1}{6} }^{3}{,}\,{\href{/padicField/41.3.0.1}{3} }$ ${\href{/padicField/43.6.0.1}{6} }^{3}{,}\,{\href{/padicField/43.3.0.1}{3} }$ ${\href{/padicField/47.3.0.1}{3} }^{7}$ ${\href{/padicField/53.3.0.1}{3} }^{6}{,}\,{\href{/padicField/53.1.0.1}{1} }^{3}$ ${\href{/padicField/59.3.0.1}{3} }^{7}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.3.0.1$x^{3} + x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.6.6.3$x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$$2$$3$$6$$C_6$$[2]^{3}$
2.6.6.3$x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$$2$$3$$6$$C_6$$[2]^{3}$
2.6.6.3$x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$$2$$3$$6$$C_6$$[2]^{3}$
\(3\) Copy content Toggle raw display 3.3.4.2$x^{3} + 6 x^{2} + 3$$3$$1$$4$$C_3$$[2]$
3.9.12.1$x^{9} + 18 x^{8} + 108 x^{7} + 225 x^{6} + 108 x^{5} + 324 x^{4} + 675 x^{3} + 4050 x^{2} - 3861$$3$$3$$12$$C_3^2$$[2]^{3}$
3.9.12.1$x^{9} + 18 x^{8} + 108 x^{7} + 225 x^{6} + 108 x^{5} + 324 x^{4} + 675 x^{3} + 4050 x^{2} - 3861$$3$$3$$12$$C_3^2$$[2]^{3}$
\(7\) Copy content Toggle raw display Deg $21$$7$$3$$21$
\(17\) Copy content Toggle raw display $\Q_{17}$$x + 14$$1$$1$$0$Trivial$[\ ]$
17.6.0.1$x^{6} + 2 x^{4} + 10 x^{2} + 3 x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
17.7.6.1$x^{7} + 17$$7$$1$$6$$F_7$$[\ ]_{7}^{6}$
17.7.6.1$x^{7} + 17$$7$$1$$6$$F_7$$[\ ]_{7}^{6}$