Properties

Label 21.21.195...568.1
Degree $21$
Signature $[21, 0]$
Discriminant $1.952\times 10^{51}$
Root discriminant \(276.95\)
Ramified primes $2,3,7,17$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_7:(C_3\times F_7)$ (as 21T24)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 168*x^19 + 11277*x^17 - 399742*x^15 - 16758*x^14 + 8311674*x^13 + 1010310*x^12 - 105527772*x^11 - 23402064*x^10 + 817061378*x^9 + 263892258*x^8 - 3702309351*x^7 - 1512309834*x^6 + 8920956618*x^5 + 4223489928*x^4 - 9401708407*x^3 - 5009255496*x^2 + 3458771652*x + 2033235224)
 
gp: K = bnfinit(y^21 - 168*y^19 + 11277*y^17 - 399742*y^15 - 16758*y^14 + 8311674*y^13 + 1010310*y^12 - 105527772*y^11 - 23402064*y^10 + 817061378*y^9 + 263892258*y^8 - 3702309351*y^7 - 1512309834*y^6 + 8920956618*y^5 + 4223489928*y^4 - 9401708407*y^3 - 5009255496*y^2 + 3458771652*y + 2033235224, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 168*x^19 + 11277*x^17 - 399742*x^15 - 16758*x^14 + 8311674*x^13 + 1010310*x^12 - 105527772*x^11 - 23402064*x^10 + 817061378*x^9 + 263892258*x^8 - 3702309351*x^7 - 1512309834*x^6 + 8920956618*x^5 + 4223489928*x^4 - 9401708407*x^3 - 5009255496*x^2 + 3458771652*x + 2033235224);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 168*x^19 + 11277*x^17 - 399742*x^15 - 16758*x^14 + 8311674*x^13 + 1010310*x^12 - 105527772*x^11 - 23402064*x^10 + 817061378*x^9 + 263892258*x^8 - 3702309351*x^7 - 1512309834*x^6 + 8920956618*x^5 + 4223489928*x^4 - 9401708407*x^3 - 5009255496*x^2 + 3458771652*x + 2033235224)
 

\( x^{21} - 168 x^{19} + 11277 x^{17} - 399742 x^{15} - 16758 x^{14} + 8311674 x^{13} + 1010310 x^{12} + \cdots + 2033235224 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $21$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[21, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1951555699117213348169834432463016320890103201005568\) \(\medspace = 2^{18}\cdot 3^{28}\cdot 7^{21}\cdot 17^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(276.95\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{4/3}7^{341/294}17^{6/7}\approx 937.6935307070016$
Ramified primes:   \(2\), \(3\), \(7\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{7}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{17}a^{11}+\frac{2}{17}a^{9}+\frac{6}{17}a^{7}-\frac{4}{17}a^{5}+\frac{4}{17}a^{4}$, $\frac{1}{51}a^{12}-\frac{5}{17}a^{10}-\frac{1}{3}a^{9}+\frac{2}{17}a^{8}-\frac{4}{51}a^{6}+\frac{7}{17}a^{5}+\frac{1}{3}$, $\frac{1}{51}a^{13}-\frac{1}{3}a^{10}-\frac{5}{17}a^{9}-\frac{16}{51}a^{7}+\frac{7}{17}a^{6}-\frac{3}{17}a^{5}+\frac{3}{17}a^{4}+\frac{1}{3}a$, $\frac{1}{867}a^{14}+\frac{2}{867}a^{12}-\frac{1}{51}a^{11}+\frac{19}{289}a^{10}-\frac{2}{51}a^{9}+\frac{98}{867}a^{8}-\frac{129}{289}a^{7}-\frac{4}{51}a^{6}-\frac{3}{17}a^{5}-\frac{7}{17}a^{4}-\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{1734}a^{15}+\frac{1}{867}a^{13}+\frac{1}{289}a^{11}+\frac{1}{3}a^{10}+\frac{287}{867}a^{9}+\frac{97}{289}a^{8}-\frac{11}{51}a^{7}+\frac{19}{51}a^{6}+\frac{2}{17}a^{5}-\frac{2}{17}a^{4}+\frac{1}{3}a^{3}+\frac{1}{6}a-\frac{1}{3}$, $\frac{1}{1734}a^{16}+\frac{1}{867}a^{12}+\frac{230}{867}a^{10}-\frac{287}{867}a^{9}-\frac{95}{289}a^{8}-\frac{259}{867}a^{7}+\frac{10}{51}a^{6}+\frac{8}{17}a^{5}+\frac{1}{3}a^{4}-\frac{1}{2}a^{2}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{29478}a^{17}+\frac{1}{14739}a^{15}-\frac{116}{14739}a^{13}+\frac{338}{14739}a^{11}+\frac{1447}{14739}a^{10}-\frac{376}{867}a^{9}-\frac{32}{867}a^{8}-\frac{16}{51}a^{7}-\frac{5}{51}a^{6}+\frac{22}{51}a^{5}+\frac{7}{17}a^{4}-\frac{35}{102}a^{3}+\frac{1}{3}a^{2}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{58956}a^{18}-\frac{5}{19652}a^{16}+\frac{1}{9826}a^{14}+\frac{45}{4913}a^{12}+\frac{97}{9826}a^{11}-\frac{273}{578}a^{10}+\frac{4}{17}a^{9}+\frac{199}{578}a^{8}+\frac{62}{289}a^{7}-\frac{2}{17}a^{6}+\frac{1}{34}a^{5}+\frac{23}{68}a^{4}-\frac{1}{3}a^{3}+\frac{1}{4}a^{2}-\frac{1}{3}$, $\frac{1}{1002252}a^{19}-\frac{5}{334084}a^{17}-\frac{133}{501126}a^{15}-\frac{1735}{250563}a^{13}+\frac{1447}{501126}a^{12}+\frac{1}{578}a^{11}-\frac{154}{867}a^{10}+\frac{131}{578}a^{9}+\frac{64}{289}a^{8}-\frac{13}{51}a^{7}-\frac{671}{1734}a^{6}+\frac{215}{1156}a^{5}+\frac{23}{51}a^{4}+\frac{7}{204}a^{3}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{16\!\cdots\!64}a^{20}+\frac{62\!\cdots\!51}{16\!\cdots\!64}a^{19}-\frac{11\!\cdots\!13}{84\!\cdots\!82}a^{18}+\frac{23\!\cdots\!77}{56\!\cdots\!88}a^{17}+\frac{28\!\cdots\!33}{16\!\cdots\!64}a^{16}+\frac{98\!\cdots\!48}{42\!\cdots\!91}a^{15}+\frac{10\!\cdots\!53}{28\!\cdots\!94}a^{14}+\frac{62\!\cdots\!77}{84\!\cdots\!82}a^{13}+\frac{19\!\cdots\!89}{42\!\cdots\!91}a^{12}+\frac{22\!\cdots\!86}{82\!\cdots\!41}a^{11}-\frac{34\!\cdots\!65}{82\!\cdots\!41}a^{10}+\frac{19\!\cdots\!63}{97\!\cdots\!46}a^{9}+\frac{18\!\cdots\!61}{97\!\cdots\!46}a^{8}-\frac{59\!\cdots\!77}{29\!\cdots\!38}a^{7}+\frac{37\!\cdots\!95}{58\!\cdots\!76}a^{6}-\frac{12\!\cdots\!91}{58\!\cdots\!76}a^{5}+\frac{35\!\cdots\!93}{85\!\cdots\!07}a^{4}-\frac{11\!\cdots\!89}{11\!\cdots\!76}a^{3}-\frac{79\!\cdots\!91}{20\!\cdots\!84}a^{2}-\frac{48\!\cdots\!43}{10\!\cdots\!42}a+\frac{13\!\cdots\!41}{16\!\cdots\!57}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $20$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{17\!\cdots\!16}{82\!\cdots\!41}a^{20}+\frac{68\!\cdots\!31}{33\!\cdots\!64}a^{19}-\frac{34\!\cdots\!65}{99\!\cdots\!92}a^{18}-\frac{98\!\cdots\!05}{33\!\cdots\!64}a^{17}+\frac{21\!\cdots\!31}{99\!\cdots\!92}a^{16}+\frac{38\!\cdots\!90}{24\!\cdots\!23}a^{15}-\frac{12\!\cdots\!73}{16\!\cdots\!82}a^{14}-\frac{61\!\cdots\!96}{14\!\cdots\!19}a^{13}+\frac{69\!\cdots\!43}{49\!\cdots\!46}a^{12}+\frac{17\!\cdots\!23}{28\!\cdots\!69}a^{11}-\frac{47\!\cdots\!45}{29\!\cdots\!38}a^{10}-\frac{89\!\cdots\!11}{17\!\cdots\!14}a^{9}+\frac{64\!\cdots\!67}{57\!\cdots\!38}a^{8}+\frac{10\!\cdots\!46}{48\!\cdots\!73}a^{7}-\frac{15\!\cdots\!23}{33\!\cdots\!14}a^{6}-\frac{29\!\cdots\!43}{11\!\cdots\!76}a^{5}+\frac{20\!\cdots\!79}{20\!\cdots\!84}a^{4}-\frac{38\!\cdots\!59}{67\!\cdots\!28}a^{3}-\frac{63\!\cdots\!21}{67\!\cdots\!28}a^{2}+\frac{20\!\cdots\!07}{33\!\cdots\!14}a+\frac{15\!\cdots\!36}{50\!\cdots\!71}$, $\frac{31\!\cdots\!35}{99\!\cdots\!92}a^{20}-\frac{16\!\cdots\!70}{24\!\cdots\!23}a^{19}-\frac{25\!\cdots\!09}{33\!\cdots\!64}a^{18}+\frac{26\!\cdots\!23}{24\!\cdots\!23}a^{17}+\frac{35\!\cdots\!33}{49\!\cdots\!46}a^{16}-\frac{31\!\cdots\!55}{49\!\cdots\!46}a^{15}-\frac{27\!\cdots\!72}{82\!\cdots\!41}a^{14}+\frac{55\!\cdots\!55}{29\!\cdots\!38}a^{13}+\frac{43\!\cdots\!89}{49\!\cdots\!46}a^{12}-\frac{27\!\cdots\!30}{85\!\cdots\!07}a^{11}-\frac{39\!\cdots\!45}{29\!\cdots\!38}a^{10}+\frac{89\!\cdots\!62}{28\!\cdots\!69}a^{9}+\frac{10\!\cdots\!27}{85\!\cdots\!07}a^{8}-\frac{16\!\cdots\!01}{97\!\cdots\!46}a^{7}-\frac{12\!\cdots\!53}{20\!\cdots\!84}a^{6}+\frac{43\!\cdots\!03}{85\!\cdots\!07}a^{5}+\frac{31\!\cdots\!03}{20\!\cdots\!84}a^{4}-\frac{34\!\cdots\!88}{50\!\cdots\!71}a^{3}-\frac{27\!\cdots\!16}{16\!\cdots\!57}a^{2}+\frac{32\!\cdots\!87}{10\!\cdots\!42}a+\frac{29\!\cdots\!72}{50\!\cdots\!71}$, $\frac{26\!\cdots\!70}{14\!\cdots\!97}a^{20}-\frac{17\!\cdots\!55}{56\!\cdots\!88}a^{19}-\frac{13\!\cdots\!36}{42\!\cdots\!91}a^{18}+\frac{86\!\cdots\!19}{16\!\cdots\!64}a^{17}+\frac{29\!\cdots\!74}{14\!\cdots\!97}a^{16}-\frac{13\!\cdots\!55}{42\!\cdots\!91}a^{15}-\frac{31\!\cdots\!54}{42\!\cdots\!91}a^{14}+\frac{43\!\cdots\!72}{42\!\cdots\!91}a^{13}+\frac{13\!\cdots\!87}{84\!\cdots\!82}a^{12}-\frac{92\!\cdots\!95}{49\!\cdots\!46}a^{11}-\frac{48\!\cdots\!89}{24\!\cdots\!23}a^{10}+\frac{55\!\cdots\!85}{29\!\cdots\!38}a^{9}+\frac{73\!\cdots\!89}{48\!\cdots\!73}a^{8}-\frac{16\!\cdots\!56}{14\!\cdots\!19}a^{7}-\frac{66\!\cdots\!91}{97\!\cdots\!46}a^{6}+\frac{20\!\cdots\!23}{58\!\cdots\!76}a^{5}+\frac{46\!\cdots\!33}{28\!\cdots\!69}a^{4}-\frac{18\!\cdots\!19}{34\!\cdots\!28}a^{3}-\frac{27\!\cdots\!73}{16\!\cdots\!57}a^{2}+\frac{26\!\cdots\!71}{10\!\cdots\!42}a+\frac{28\!\cdots\!68}{50\!\cdots\!71}$, $\frac{13\!\cdots\!03}{56\!\cdots\!88}a^{20}+\frac{21\!\cdots\!75}{16\!\cdots\!64}a^{19}-\frac{65\!\cdots\!11}{16\!\cdots\!64}a^{18}-\frac{26\!\cdots\!15}{16\!\cdots\!64}a^{17}+\frac{67\!\cdots\!37}{28\!\cdots\!94}a^{16}+\frac{18\!\cdots\!27}{28\!\cdots\!94}a^{15}-\frac{32\!\cdots\!79}{42\!\cdots\!91}a^{14}-\frac{10\!\cdots\!27}{84\!\cdots\!82}a^{13}+\frac{19\!\cdots\!58}{14\!\cdots\!97}a^{12}+\frac{15\!\cdots\!69}{16\!\cdots\!82}a^{11}-\frac{74\!\cdots\!13}{49\!\cdots\!46}a^{10}+\frac{23\!\cdots\!51}{97\!\cdots\!46}a^{9}+\frac{13\!\cdots\!53}{14\!\cdots\!19}a^{8}-\frac{27\!\cdots\!31}{29\!\cdots\!38}a^{7}-\frac{67\!\cdots\!83}{19\!\cdots\!92}a^{6}+\frac{35\!\cdots\!03}{58\!\cdots\!76}a^{5}+\frac{22\!\cdots\!55}{34\!\cdots\!28}a^{4}-\frac{28\!\cdots\!97}{20\!\cdots\!84}a^{3}-\frac{26\!\cdots\!44}{50\!\cdots\!71}a^{2}+\frac{12\!\cdots\!82}{16\!\cdots\!57}a+\frac{77\!\cdots\!01}{50\!\cdots\!71}$, $\frac{49\!\cdots\!77}{28\!\cdots\!94}a^{20}-\frac{21\!\cdots\!57}{56\!\cdots\!88}a^{19}-\frac{49\!\cdots\!95}{16\!\cdots\!64}a^{18}+\frac{13\!\cdots\!69}{16\!\cdots\!64}a^{17}+\frac{10\!\cdots\!57}{56\!\cdots\!88}a^{16}-\frac{27\!\cdots\!00}{42\!\cdots\!91}a^{15}-\frac{54\!\cdots\!73}{84\!\cdots\!82}a^{14}+\frac{10\!\cdots\!79}{42\!\cdots\!91}a^{13}+\frac{10\!\cdots\!49}{84\!\cdots\!82}a^{12}-\frac{11\!\cdots\!36}{24\!\cdots\!23}a^{11}-\frac{75\!\cdots\!93}{49\!\cdots\!46}a^{10}+\frac{15\!\cdots\!59}{29\!\cdots\!38}a^{9}+\frac{10\!\cdots\!67}{97\!\cdots\!46}a^{8}-\frac{50\!\cdots\!32}{14\!\cdots\!19}a^{7}-\frac{23\!\cdots\!64}{48\!\cdots\!73}a^{6}+\frac{73\!\cdots\!79}{58\!\cdots\!76}a^{5}+\frac{12\!\cdots\!31}{11\!\cdots\!76}a^{4}-\frac{77\!\cdots\!25}{34\!\cdots\!28}a^{3}-\frac{69\!\cdots\!85}{67\!\cdots\!28}a^{2}+\frac{12\!\cdots\!73}{10\!\cdots\!42}a+\frac{17\!\cdots\!09}{50\!\cdots\!71}$, $\frac{42\!\cdots\!30}{14\!\cdots\!97}a^{20}+\frac{12\!\cdots\!65}{42\!\cdots\!91}a^{19}-\frac{40\!\cdots\!91}{84\!\cdots\!82}a^{18}-\frac{35\!\cdots\!69}{84\!\cdots\!82}a^{17}+\frac{12\!\cdots\!44}{42\!\cdots\!91}a^{16}+\frac{18\!\cdots\!19}{84\!\cdots\!82}a^{15}-\frac{13\!\cdots\!62}{14\!\cdots\!97}a^{14}-\frac{24\!\cdots\!20}{42\!\cdots\!91}a^{13}+\frac{76\!\cdots\!05}{42\!\cdots\!91}a^{12}+\frac{20\!\cdots\!30}{24\!\cdots\!23}a^{11}-\frac{16\!\cdots\!61}{82\!\cdots\!41}a^{10}-\frac{10\!\cdots\!24}{14\!\cdots\!19}a^{9}+\frac{19\!\cdots\!85}{14\!\cdots\!19}a^{8}+\frac{39\!\cdots\!37}{14\!\cdots\!19}a^{7}-\frac{25\!\cdots\!70}{48\!\cdots\!73}a^{6}-\frac{42\!\cdots\!93}{14\!\cdots\!19}a^{5}+\frac{18\!\cdots\!33}{17\!\cdots\!14}a^{4}-\frac{12\!\cdots\!97}{17\!\cdots\!14}a^{3}-\frac{50\!\cdots\!38}{50\!\cdots\!71}a^{2}+\frac{75\!\cdots\!73}{10\!\cdots\!42}a+\frac{16\!\cdots\!58}{50\!\cdots\!71}$, $\frac{84\!\cdots\!45}{56\!\cdots\!88}a^{20}-\frac{11\!\cdots\!23}{84\!\cdots\!82}a^{19}-\frac{42\!\cdots\!93}{16\!\cdots\!64}a^{18}+\frac{30\!\cdots\!03}{14\!\cdots\!97}a^{17}+\frac{70\!\cdots\!58}{42\!\cdots\!91}a^{16}-\frac{40\!\cdots\!41}{28\!\cdots\!94}a^{15}-\frac{24\!\cdots\!08}{42\!\cdots\!91}a^{14}+\frac{39\!\cdots\!39}{84\!\cdots\!82}a^{13}+\frac{10\!\cdots\!69}{84\!\cdots\!82}a^{12}-\frac{21\!\cdots\!25}{24\!\cdots\!23}a^{11}-\frac{24\!\cdots\!95}{16\!\cdots\!82}a^{10}+\frac{12\!\cdots\!25}{14\!\cdots\!19}a^{9}+\frac{16\!\cdots\!91}{14\!\cdots\!19}a^{8}-\frac{15\!\cdots\!77}{29\!\cdots\!38}a^{7}-\frac{29\!\cdots\!97}{58\!\cdots\!76}a^{6}+\frac{16\!\cdots\!35}{97\!\cdots\!46}a^{5}+\frac{39\!\cdots\!93}{34\!\cdots\!28}a^{4}-\frac{24\!\cdots\!87}{85\!\cdots\!07}a^{3}-\frac{11\!\cdots\!73}{10\!\cdots\!42}a^{2}+\frac{14\!\cdots\!85}{10\!\cdots\!42}a+\frac{64\!\cdots\!31}{16\!\cdots\!57}$, $\frac{28\!\cdots\!15}{16\!\cdots\!64}a^{20}-\frac{20\!\cdots\!55}{16\!\cdots\!82}a^{19}-\frac{15\!\cdots\!25}{56\!\cdots\!88}a^{18}+\frac{19\!\cdots\!23}{49\!\cdots\!46}a^{17}+\frac{15\!\cdots\!23}{84\!\cdots\!82}a^{16}-\frac{71\!\cdots\!15}{16\!\cdots\!82}a^{15}-\frac{26\!\cdots\!05}{42\!\cdots\!91}a^{14}+\frac{15\!\cdots\!49}{84\!\cdots\!82}a^{13}+\frac{20\!\cdots\!81}{16\!\cdots\!82}a^{12}-\frac{34\!\cdots\!65}{82\!\cdots\!41}a^{11}-\frac{25\!\cdots\!55}{16\!\cdots\!82}a^{10}+\frac{25\!\cdots\!09}{48\!\cdots\!73}a^{9}+\frac{17\!\cdots\!04}{14\!\cdots\!19}a^{8}-\frac{11\!\cdots\!69}{29\!\cdots\!38}a^{7}-\frac{10\!\cdots\!27}{19\!\cdots\!92}a^{6}+\frac{93\!\cdots\!47}{57\!\cdots\!38}a^{5}+\frac{41\!\cdots\!51}{34\!\cdots\!28}a^{4}-\frac{19\!\cdots\!53}{57\!\cdots\!38}a^{3}-\frac{20\!\cdots\!52}{16\!\cdots\!57}a^{2}+\frac{19\!\cdots\!47}{10\!\cdots\!42}a+\frac{73\!\cdots\!33}{16\!\cdots\!57}$, $\frac{11\!\cdots\!57}{14\!\cdots\!97}a^{20}+\frac{96\!\cdots\!18}{42\!\cdots\!91}a^{19}-\frac{56\!\cdots\!64}{42\!\cdots\!91}a^{18}-\frac{15\!\cdots\!22}{42\!\cdots\!91}a^{17}+\frac{11\!\cdots\!39}{14\!\cdots\!97}a^{16}+\frac{60\!\cdots\!49}{28\!\cdots\!94}a^{15}-\frac{37\!\cdots\!98}{14\!\cdots\!97}a^{14}-\frac{28\!\cdots\!64}{42\!\cdots\!91}a^{13}+\frac{20\!\cdots\!97}{42\!\cdots\!91}a^{12}+\frac{30\!\cdots\!40}{24\!\cdots\!23}a^{11}-\frac{12\!\cdots\!95}{24\!\cdots\!23}a^{10}-\frac{19\!\cdots\!43}{14\!\cdots\!19}a^{9}+\frac{46\!\cdots\!60}{14\!\cdots\!19}a^{8}+\frac{12\!\cdots\!96}{14\!\cdots\!19}a^{7}-\frac{15\!\cdots\!36}{14\!\cdots\!19}a^{6}-\frac{45\!\cdots\!77}{14\!\cdots\!19}a^{5}+\frac{99\!\cdots\!22}{85\!\cdots\!07}a^{4}+\frac{46\!\cdots\!47}{85\!\cdots\!07}a^{3}+\frac{54\!\cdots\!10}{50\!\cdots\!71}a^{2}-\frac{98\!\cdots\!39}{33\!\cdots\!14}a-\frac{67\!\cdots\!39}{50\!\cdots\!71}$, $\frac{10\!\cdots\!71}{16\!\cdots\!64}a^{20}-\frac{11\!\cdots\!23}{84\!\cdots\!82}a^{19}-\frac{13\!\cdots\!18}{14\!\cdots\!97}a^{18}+\frac{18\!\cdots\!73}{84\!\cdots\!82}a^{17}+\frac{10\!\cdots\!61}{16\!\cdots\!64}a^{16}-\frac{39\!\cdots\!83}{28\!\cdots\!94}a^{15}-\frac{55\!\cdots\!39}{28\!\cdots\!94}a^{14}+\frac{37\!\cdots\!29}{84\!\cdots\!82}a^{13}+\frac{30\!\cdots\!37}{84\!\cdots\!82}a^{12}-\frac{38\!\cdots\!41}{49\!\cdots\!46}a^{11}-\frac{19\!\cdots\!67}{48\!\cdots\!73}a^{10}+\frac{11\!\cdots\!55}{14\!\cdots\!19}a^{9}+\frac{73\!\cdots\!49}{29\!\cdots\!38}a^{8}-\frac{12\!\cdots\!95}{29\!\cdots\!38}a^{7}-\frac{52\!\cdots\!81}{58\!\cdots\!76}a^{6}+\frac{17\!\cdots\!01}{14\!\cdots\!19}a^{5}+\frac{95\!\cdots\!53}{57\!\cdots\!38}a^{4}-\frac{79\!\cdots\!03}{57\!\cdots\!38}a^{3}-\frac{98\!\cdots\!57}{67\!\cdots\!28}a^{2}+\frac{17\!\cdots\!15}{33\!\cdots\!14}a+\frac{24\!\cdots\!20}{50\!\cdots\!71}$, $\frac{46\!\cdots\!39}{16\!\cdots\!64}a^{20}-\frac{26\!\cdots\!13}{33\!\cdots\!64}a^{19}-\frac{64\!\cdots\!92}{14\!\cdots\!97}a^{18}+\frac{15\!\cdots\!11}{99\!\cdots\!92}a^{17}+\frac{50\!\cdots\!35}{16\!\cdots\!64}a^{16}-\frac{58\!\cdots\!51}{49\!\cdots\!46}a^{15}-\frac{86\!\cdots\!67}{84\!\cdots\!82}a^{14}+\frac{36\!\cdots\!31}{84\!\cdots\!82}a^{13}+\frac{51\!\cdots\!87}{24\!\cdots\!23}a^{12}-\frac{68\!\cdots\!11}{82\!\cdots\!41}a^{11}-\frac{20\!\cdots\!49}{82\!\cdots\!41}a^{10}+\frac{88\!\cdots\!61}{97\!\cdots\!46}a^{9}+\frac{54\!\cdots\!01}{29\!\cdots\!38}a^{8}-\frac{16\!\cdots\!09}{29\!\cdots\!38}a^{7}-\frac{47\!\cdots\!75}{58\!\cdots\!76}a^{6}+\frac{24\!\cdots\!81}{11\!\cdots\!76}a^{5}+\frac{31\!\cdots\!97}{17\!\cdots\!14}a^{4}-\frac{13\!\cdots\!67}{34\!\cdots\!28}a^{3}-\frac{12\!\cdots\!39}{67\!\cdots\!28}a^{2}+\frac{10\!\cdots\!57}{50\!\cdots\!71}a+\frac{30\!\cdots\!19}{50\!\cdots\!71}$, $\frac{36\!\cdots\!03}{84\!\cdots\!82}a^{20}-\frac{17\!\cdots\!09}{42\!\cdots\!91}a^{19}-\frac{10\!\cdots\!88}{14\!\cdots\!97}a^{18}+\frac{19\!\cdots\!71}{28\!\cdots\!94}a^{17}+\frac{13\!\cdots\!87}{28\!\cdots\!94}a^{16}-\frac{38\!\cdots\!57}{84\!\cdots\!82}a^{15}-\frac{24\!\cdots\!36}{14\!\cdots\!97}a^{14}+\frac{37\!\cdots\!20}{24\!\cdots\!23}a^{13}+\frac{49\!\cdots\!84}{14\!\cdots\!97}a^{12}-\frac{22\!\cdots\!52}{82\!\cdots\!41}a^{11}-\frac{11\!\cdots\!30}{24\!\cdots\!23}a^{10}+\frac{40\!\cdots\!55}{14\!\cdots\!19}a^{9}+\frac{16\!\cdots\!15}{48\!\cdots\!73}a^{8}-\frac{14\!\cdots\!84}{85\!\cdots\!07}a^{7}-\frac{26\!\cdots\!89}{17\!\cdots\!14}a^{6}+\frac{81\!\cdots\!06}{14\!\cdots\!19}a^{5}+\frac{30\!\cdots\!92}{85\!\cdots\!07}a^{4}-\frac{15\!\cdots\!99}{17\!\cdots\!14}a^{3}-\frac{35\!\cdots\!37}{10\!\cdots\!42}a^{2}+\frac{16\!\cdots\!51}{33\!\cdots\!14}a+\frac{60\!\cdots\!78}{50\!\cdots\!71}$, $\frac{51\!\cdots\!45}{16\!\cdots\!64}a^{20}+\frac{84\!\cdots\!25}{56\!\cdots\!88}a^{19}-\frac{38\!\cdots\!11}{84\!\cdots\!82}a^{18}-\frac{12\!\cdots\!41}{56\!\cdots\!88}a^{17}+\frac{42\!\cdots\!61}{16\!\cdots\!64}a^{16}+\frac{56\!\cdots\!79}{42\!\cdots\!91}a^{15}-\frac{19\!\cdots\!49}{28\!\cdots\!94}a^{14}-\frac{11\!\cdots\!35}{28\!\cdots\!94}a^{13}+\frac{42\!\cdots\!30}{42\!\cdots\!91}a^{12}+\frac{54\!\cdots\!59}{82\!\cdots\!41}a^{11}-\frac{16\!\cdots\!07}{24\!\cdots\!23}a^{10}-\frac{61\!\cdots\!21}{97\!\cdots\!46}a^{9}+\frac{89\!\cdots\!99}{97\!\cdots\!46}a^{8}+\frac{96\!\cdots\!49}{29\!\cdots\!38}a^{7}+\frac{74\!\cdots\!35}{58\!\cdots\!76}a^{6}-\frac{52\!\cdots\!27}{58\!\cdots\!76}a^{5}-\frac{52\!\cdots\!23}{85\!\cdots\!07}a^{4}+\frac{11\!\cdots\!65}{11\!\cdots\!76}a^{3}+\frac{16\!\cdots\!89}{20\!\cdots\!84}a^{2}-\frac{41\!\cdots\!93}{10\!\cdots\!42}a-\frac{56\!\cdots\!84}{16\!\cdots\!57}$, $\frac{18\!\cdots\!40}{42\!\cdots\!91}a^{20}-\frac{10\!\cdots\!85}{84\!\cdots\!82}a^{19}-\frac{59\!\cdots\!99}{84\!\cdots\!82}a^{18}+\frac{85\!\cdots\!75}{42\!\cdots\!91}a^{17}+\frac{18\!\cdots\!64}{42\!\cdots\!91}a^{16}-\frac{35\!\cdots\!39}{28\!\cdots\!94}a^{15}-\frac{60\!\cdots\!45}{42\!\cdots\!91}a^{14}+\frac{16\!\cdots\!67}{42\!\cdots\!91}a^{13}+\frac{10\!\cdots\!29}{42\!\cdots\!91}a^{12}-\frac{17\!\cdots\!01}{24\!\cdots\!23}a^{11}-\frac{23\!\cdots\!79}{82\!\cdots\!41}a^{10}+\frac{10\!\cdots\!64}{14\!\cdots\!19}a^{9}+\frac{84\!\cdots\!66}{48\!\cdots\!73}a^{8}-\frac{55\!\cdots\!21}{14\!\cdots\!19}a^{7}-\frac{87\!\cdots\!54}{14\!\cdots\!19}a^{6}+\frac{10\!\cdots\!25}{97\!\cdots\!46}a^{5}+\frac{60\!\cdots\!63}{57\!\cdots\!38}a^{4}-\frac{10\!\cdots\!57}{85\!\cdots\!07}a^{3}-\frac{46\!\cdots\!59}{50\!\cdots\!71}a^{2}+\frac{14\!\cdots\!75}{33\!\cdots\!14}a+\frac{52\!\cdots\!65}{16\!\cdots\!57}$, $\frac{51\!\cdots\!83}{56\!\cdots\!88}a^{20}+\frac{17\!\cdots\!67}{16\!\cdots\!64}a^{19}-\frac{12\!\cdots\!35}{84\!\cdots\!82}a^{18}-\frac{24\!\cdots\!87}{16\!\cdots\!64}a^{17}+\frac{14\!\cdots\!63}{16\!\cdots\!64}a^{16}+\frac{32\!\cdots\!86}{42\!\cdots\!91}a^{15}-\frac{22\!\cdots\!59}{84\!\cdots\!82}a^{14}-\frac{17\!\cdots\!45}{84\!\cdots\!82}a^{13}+\frac{18\!\cdots\!13}{42\!\cdots\!91}a^{12}+\frac{25\!\cdots\!81}{82\!\cdots\!41}a^{11}-\frac{10\!\cdots\!90}{24\!\cdots\!23}a^{10}-\frac{77\!\cdots\!27}{29\!\cdots\!38}a^{9}+\frac{70\!\cdots\!51}{29\!\cdots\!38}a^{8}+\frac{12\!\cdots\!77}{97\!\cdots\!46}a^{7}-\frac{13\!\cdots\!39}{19\!\cdots\!92}a^{6}-\frac{17\!\cdots\!39}{58\!\cdots\!76}a^{5}+\frac{24\!\cdots\!32}{28\!\cdots\!69}a^{4}+\frac{23\!\cdots\!57}{67\!\cdots\!28}a^{3}-\frac{78\!\cdots\!41}{20\!\cdots\!84}a^{2}-\frac{15\!\cdots\!65}{10\!\cdots\!42}a+\frac{15\!\cdots\!94}{50\!\cdots\!71}$, $\frac{75\!\cdots\!69}{42\!\cdots\!91}a^{20}+\frac{50\!\cdots\!31}{56\!\cdots\!88}a^{19}-\frac{82\!\cdots\!19}{28\!\cdots\!94}a^{18}-\frac{20\!\cdots\!27}{16\!\cdots\!64}a^{17}+\frac{15\!\cdots\!53}{84\!\cdots\!82}a^{16}+\frac{23\!\cdots\!69}{42\!\cdots\!91}a^{15}-\frac{89\!\cdots\!89}{14\!\cdots\!97}a^{14}-\frac{50\!\cdots\!20}{42\!\cdots\!91}a^{13}+\frac{10\!\cdots\!53}{84\!\cdots\!82}a^{12}+\frac{67\!\cdots\!55}{49\!\cdots\!46}a^{11}-\frac{12\!\cdots\!05}{82\!\cdots\!41}a^{10}-\frac{59\!\cdots\!15}{97\!\cdots\!46}a^{9}+\frac{15\!\cdots\!96}{14\!\cdots\!19}a^{8}-\frac{39\!\cdots\!74}{14\!\cdots\!19}a^{7}-\frac{13\!\cdots\!47}{29\!\cdots\!38}a^{6}+\frac{79\!\cdots\!23}{19\!\cdots\!92}a^{5}+\frac{18\!\cdots\!17}{17\!\cdots\!14}a^{4}-\frac{46\!\cdots\!97}{34\!\cdots\!28}a^{3}-\frac{10\!\cdots\!05}{10\!\cdots\!42}a^{2}+\frac{93\!\cdots\!87}{10\!\cdots\!42}a+\frac{16\!\cdots\!51}{50\!\cdots\!71}$, $\frac{11\!\cdots\!41}{16\!\cdots\!64}a^{20}-\frac{15\!\cdots\!55}{42\!\cdots\!91}a^{19}-\frac{35\!\cdots\!25}{28\!\cdots\!94}a^{18}+\frac{81\!\cdots\!83}{14\!\cdots\!97}a^{17}+\frac{14\!\cdots\!01}{16\!\cdots\!64}a^{16}-\frac{14\!\cdots\!72}{42\!\cdots\!91}a^{15}-\frac{92\!\cdots\!33}{28\!\cdots\!94}a^{14}+\frac{29\!\cdots\!51}{28\!\cdots\!94}a^{13}+\frac{20\!\cdots\!71}{28\!\cdots\!94}a^{12}-\frac{29\!\cdots\!87}{16\!\cdots\!82}a^{11}-\frac{14\!\cdots\!58}{14\!\cdots\!19}a^{10}+\frac{25\!\cdots\!03}{14\!\cdots\!19}a^{9}+\frac{78\!\cdots\!87}{97\!\cdots\!46}a^{8}-\frac{28\!\cdots\!37}{29\!\cdots\!38}a^{7}-\frac{22\!\cdots\!43}{58\!\cdots\!76}a^{6}+\frac{83\!\cdots\!77}{29\!\cdots\!38}a^{5}+\frac{82\!\cdots\!77}{85\!\cdots\!07}a^{4}-\frac{34\!\cdots\!93}{85\!\cdots\!07}a^{3}-\frac{19\!\cdots\!87}{20\!\cdots\!84}a^{2}+\frac{31\!\cdots\!02}{16\!\cdots\!57}a+\frac{17\!\cdots\!33}{50\!\cdots\!71}$, $\frac{14\!\cdots\!41}{16\!\cdots\!64}a^{20}+\frac{14\!\cdots\!45}{16\!\cdots\!64}a^{19}-\frac{56\!\cdots\!48}{42\!\cdots\!91}a^{18}-\frac{21\!\cdots\!27}{16\!\cdots\!64}a^{17}+\frac{47\!\cdots\!67}{56\!\cdots\!88}a^{16}+\frac{28\!\cdots\!22}{42\!\cdots\!91}a^{15}-\frac{23\!\cdots\!39}{84\!\cdots\!82}a^{14}-\frac{52\!\cdots\!23}{28\!\cdots\!94}a^{13}+\frac{22\!\cdots\!07}{42\!\cdots\!91}a^{12}+\frac{23\!\cdots\!42}{82\!\cdots\!41}a^{11}-\frac{50\!\cdots\!90}{82\!\cdots\!41}a^{10}-\frac{42\!\cdots\!13}{17\!\cdots\!14}a^{9}+\frac{12\!\cdots\!69}{29\!\cdots\!38}a^{8}+\frac{10\!\cdots\!71}{97\!\cdots\!46}a^{7}-\frac{33\!\cdots\!27}{19\!\cdots\!92}a^{6}-\frac{34\!\cdots\!71}{19\!\cdots\!92}a^{5}+\frac{63\!\cdots\!99}{17\!\cdots\!14}a^{4}-\frac{77\!\cdots\!31}{67\!\cdots\!28}a^{3}-\frac{23\!\cdots\!25}{67\!\cdots\!28}a^{2}+\frac{18\!\cdots\!27}{10\!\cdots\!42}a+\frac{55\!\cdots\!39}{50\!\cdots\!71}$, $\frac{65\!\cdots\!25}{56\!\cdots\!88}a^{20}+\frac{23\!\cdots\!65}{16\!\cdots\!64}a^{19}-\frac{32\!\cdots\!33}{16\!\cdots\!64}a^{18}-\frac{16\!\cdots\!19}{16\!\cdots\!64}a^{17}+\frac{17\!\cdots\!77}{14\!\cdots\!97}a^{16}-\frac{19\!\cdots\!58}{42\!\cdots\!91}a^{15}-\frac{18\!\cdots\!04}{42\!\cdots\!91}a^{14}+\frac{36\!\cdots\!47}{84\!\cdots\!82}a^{13}+\frac{36\!\cdots\!11}{42\!\cdots\!91}a^{12}-\frac{56\!\cdots\!79}{49\!\cdots\!46}a^{11}-\frac{51\!\cdots\!01}{49\!\cdots\!46}a^{10}+\frac{44\!\cdots\!07}{29\!\cdots\!38}a^{9}+\frac{37\!\cdots\!59}{48\!\cdots\!73}a^{8}-\frac{34\!\cdots\!75}{29\!\cdots\!38}a^{7}-\frac{65\!\cdots\!29}{19\!\cdots\!92}a^{6}+\frac{30\!\cdots\!05}{58\!\cdots\!76}a^{5}+\frac{26\!\cdots\!37}{34\!\cdots\!28}a^{4}-\frac{39\!\cdots\!37}{34\!\cdots\!28}a^{3}-\frac{24\!\cdots\!67}{33\!\cdots\!14}a^{2}+\frac{23\!\cdots\!71}{33\!\cdots\!14}a+\frac{12\!\cdots\!98}{50\!\cdots\!71}$, $\frac{28\!\cdots\!43}{16\!\cdots\!64}a^{20}+\frac{33\!\cdots\!27}{56\!\cdots\!88}a^{19}-\frac{72\!\cdots\!83}{28\!\cdots\!94}a^{18}-\frac{51\!\cdots\!33}{56\!\cdots\!88}a^{17}+\frac{25\!\cdots\!39}{16\!\cdots\!64}a^{16}+\frac{22\!\cdots\!44}{42\!\cdots\!91}a^{15}-\frac{37\!\cdots\!63}{84\!\cdots\!82}a^{14}-\frac{13\!\cdots\!39}{84\!\cdots\!82}a^{13}+\frac{29\!\cdots\!84}{42\!\cdots\!91}a^{12}+\frac{63\!\cdots\!38}{24\!\cdots\!23}a^{11}-\frac{15\!\cdots\!92}{24\!\cdots\!23}a^{10}-\frac{70\!\cdots\!31}{29\!\cdots\!38}a^{9}+\frac{83\!\cdots\!31}{29\!\cdots\!38}a^{8}+\frac{12\!\cdots\!87}{97\!\cdots\!46}a^{7}-\frac{96\!\cdots\!93}{19\!\cdots\!92}a^{6}-\frac{19\!\cdots\!09}{58\!\cdots\!76}a^{5}-\frac{23\!\cdots\!92}{85\!\cdots\!07}a^{4}+\frac{12\!\cdots\!79}{34\!\cdots\!28}a^{3}+\frac{24\!\cdots\!55}{20\!\cdots\!84}a^{2}-\frac{47\!\cdots\!67}{33\!\cdots\!14}a-\frac{11\!\cdots\!68}{16\!\cdots\!57}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 26055225840600000000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{21}\cdot(2\pi)^{0}\cdot 26055225840600000000 \cdot 1}{2\cdot\sqrt{1951555699117213348169834432463016320890103201005568}}\cr\approx \mathstrut & 0.618449552617411 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^21 - 168*x^19 + 11277*x^17 - 399742*x^15 - 16758*x^14 + 8311674*x^13 + 1010310*x^12 - 105527772*x^11 - 23402064*x^10 + 817061378*x^9 + 263892258*x^8 - 3702309351*x^7 - 1512309834*x^6 + 8920956618*x^5 + 4223489928*x^4 - 9401708407*x^3 - 5009255496*x^2 + 3458771652*x + 2033235224)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^21 - 168*x^19 + 11277*x^17 - 399742*x^15 - 16758*x^14 + 8311674*x^13 + 1010310*x^12 - 105527772*x^11 - 23402064*x^10 + 817061378*x^9 + 263892258*x^8 - 3702309351*x^7 - 1512309834*x^6 + 8920956618*x^5 + 4223489928*x^4 - 9401708407*x^3 - 5009255496*x^2 + 3458771652*x + 2033235224, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^21 - 168*x^19 + 11277*x^17 - 399742*x^15 - 16758*x^14 + 8311674*x^13 + 1010310*x^12 - 105527772*x^11 - 23402064*x^10 + 817061378*x^9 + 263892258*x^8 - 3702309351*x^7 - 1512309834*x^6 + 8920956618*x^5 + 4223489928*x^4 - 9401708407*x^3 - 5009255496*x^2 + 3458771652*x + 2033235224);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 168*x^19 + 11277*x^17 - 399742*x^15 - 16758*x^14 + 8311674*x^13 + 1010310*x^12 - 105527772*x^11 - 23402064*x^10 + 817061378*x^9 + 263892258*x^8 - 3702309351*x^7 - 1512309834*x^6 + 8920956618*x^5 + 4223489928*x^4 - 9401708407*x^3 - 5009255496*x^2 + 3458771652*x + 2033235224);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_7:(C_3\times F_7)$ (as 21T24):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 882
The 26 conjugacy class representatives for $C_7:(C_3\times F_7)$
Character table for $C_7:(C_3\times F_7)$

Intermediate fields

\(\Q(\zeta_{9})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 21 sibling: data not computed
Degree 42 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }^{3}{,}\,{\href{/padicField/5.3.0.1}{3} }$ R ${\href{/padicField/11.6.0.1}{6} }^{3}{,}\,{\href{/padicField/11.3.0.1}{3} }$ ${\href{/padicField/13.6.0.1}{6} }^{3}{,}\,{\href{/padicField/13.3.0.1}{3} }$ R ${\href{/padicField/19.3.0.1}{3} }^{6}{,}\,{\href{/padicField/19.1.0.1}{1} }^{3}$ ${\href{/padicField/23.6.0.1}{6} }^{3}{,}\,{\href{/padicField/23.3.0.1}{3} }$ $21$ $21$ ${\href{/padicField/37.3.0.1}{3} }^{6}{,}\,{\href{/padicField/37.1.0.1}{1} }^{3}$ ${\href{/padicField/41.6.0.1}{6} }^{3}{,}\,{\href{/padicField/41.3.0.1}{3} }$ ${\href{/padicField/43.6.0.1}{6} }^{3}{,}\,{\href{/padicField/43.3.0.1}{3} }$ $21$ ${\href{/padicField/53.3.0.1}{3} }^{6}{,}\,{\href{/padicField/53.1.0.1}{1} }^{3}$ $21$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.3.0.1$x^{3} + x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.6.6.3$x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$$2$$3$$6$$C_6$$[2]^{3}$
2.6.6.3$x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$$2$$3$$6$$C_6$$[2]^{3}$
2.6.6.3$x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$$2$$3$$6$$C_6$$[2]^{3}$
\(3\) Copy content Toggle raw display 3.3.4.2$x^{3} + 6 x^{2} + 3$$3$$1$$4$$C_3$$[2]$
3.9.12.1$x^{9} + 18 x^{8} + 108 x^{7} + 225 x^{6} + 108 x^{5} + 324 x^{4} + 675 x^{3} + 4050 x^{2} - 3861$$3$$3$$12$$C_3^2$$[2]^{3}$
3.9.12.1$x^{9} + 18 x^{8} + 108 x^{7} + 225 x^{6} + 108 x^{5} + 324 x^{4} + 675 x^{3} + 4050 x^{2} - 3861$$3$$3$$12$$C_3^2$$[2]^{3}$
\(7\) Copy content Toggle raw display Deg $21$$7$$3$$21$
\(17\) Copy content Toggle raw display $\Q_{17}$$x + 14$$1$$1$$0$Trivial$[\ ]$
17.6.0.1$x^{6} + 2 x^{4} + 10 x^{2} + 3 x + 3$$1$$6$$0$$C_6$$[\ ]^{6}$
17.7.6.1$x^{7} + 17$$7$$1$$6$$F_7$$[\ ]_{7}^{6}$
17.7.6.1$x^{7} + 17$$7$$1$$6$$F_7$$[\ ]_{7}^{6}$