Normalized defining polynomial
\( x^{21} - 168 x^{19} + 11277 x^{17} - 399742 x^{15} - 16758 x^{14} + 8311674 x^{13} + 1010310 x^{12} - 105527772 x^{11} - 23402064 x^{10} + 817061378 x^{9} + 263892258 x^{8} - 3702309351 x^{7} - 1512309834 x^{6} + 8920956618 x^{5} + 4223489928 x^{4} - 9401708407 x^{3} - 5009255496 x^{2} + 3458771652 x + 2033235224 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1951555699117213348169834432463016320890103201005568=2^{18}\cdot 3^{28}\cdot 7^{21}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $276.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{17} a^{11} + \frac{2}{17} a^{9} + \frac{6}{17} a^{7} - \frac{4}{17} a^{5} + \frac{4}{17} a^{4}$, $\frac{1}{51} a^{12} - \frac{5}{17} a^{10} - \frac{1}{3} a^{9} + \frac{2}{17} a^{8} - \frac{4}{51} a^{6} + \frac{7}{17} a^{5} + \frac{1}{3}$, $\frac{1}{51} a^{13} - \frac{1}{3} a^{10} - \frac{5}{17} a^{9} - \frac{16}{51} a^{7} + \frac{7}{17} a^{6} - \frac{3}{17} a^{5} + \frac{3}{17} a^{4} + \frac{1}{3} a$, $\frac{1}{867} a^{14} + \frac{2}{867} a^{12} - \frac{1}{51} a^{11} + \frac{19}{289} a^{10} - \frac{2}{51} a^{9} + \frac{98}{867} a^{8} - \frac{129}{289} a^{7} - \frac{4}{51} a^{6} - \frac{3}{17} a^{5} - \frac{7}{17} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{1734} a^{15} + \frac{1}{867} a^{13} + \frac{1}{289} a^{11} + \frac{1}{3} a^{10} + \frac{287}{867} a^{9} + \frac{97}{289} a^{8} - \frac{11}{51} a^{7} + \frac{19}{51} a^{6} + \frac{2}{17} a^{5} - \frac{2}{17} a^{4} + \frac{1}{3} a^{3} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{1734} a^{16} + \frac{1}{867} a^{12} + \frac{230}{867} a^{10} - \frac{287}{867} a^{9} - \frac{95}{289} a^{8} - \frac{259}{867} a^{7} + \frac{10}{51} a^{6} + \frac{8}{17} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{29478} a^{17} + \frac{1}{14739} a^{15} - \frac{116}{14739} a^{13} + \frac{338}{14739} a^{11} + \frac{1447}{14739} a^{10} - \frac{376}{867} a^{9} - \frac{32}{867} a^{8} - \frac{16}{51} a^{7} - \frac{5}{51} a^{6} + \frac{22}{51} a^{5} + \frac{7}{17} a^{4} - \frac{35}{102} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{58956} a^{18} - \frac{5}{19652} a^{16} + \frac{1}{9826} a^{14} + \frac{45}{4913} a^{12} + \frac{97}{9826} a^{11} - \frac{273}{578} a^{10} + \frac{4}{17} a^{9} + \frac{199}{578} a^{8} + \frac{62}{289} a^{7} - \frac{2}{17} a^{6} + \frac{1}{34} a^{5} + \frac{23}{68} a^{4} - \frac{1}{3} a^{3} + \frac{1}{4} a^{2} - \frac{1}{3}$, $\frac{1}{1002252} a^{19} - \frac{5}{334084} a^{17} - \frac{133}{501126} a^{15} - \frac{1735}{250563} a^{13} + \frac{1447}{501126} a^{12} + \frac{1}{578} a^{11} - \frac{154}{867} a^{10} + \frac{131}{578} a^{9} + \frac{64}{289} a^{8} - \frac{13}{51} a^{7} - \frac{671}{1734} a^{6} + \frac{215}{1156} a^{5} + \frac{23}{51} a^{4} + \frac{7}{204} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{16883915483267168185283543681213895387682010146764} a^{20} + \frac{6204248856069311072305220206975044173222351}{16883915483267168185283543681213895387682010146764} a^{19} - \frac{1175077200181274487001112033451619143015313}{8441957741633584092641771840606947693841005073382} a^{18} + \frac{2309646969740409850438567378214188618678577}{5627971827755722728427847893737965129227336715588} a^{17} + \frac{2828063398485031820542542614885782678619310133}{16883915483267168185283543681213895387682010146764} a^{16} + \frac{989002864606626327505670966947744941813168148}{4220978870816792046320885920303473846920502536691} a^{15} + \frac{1063745037241257288552322337824883120116277553}{2813985913877861364213923946868982564613668357794} a^{14} + \frac{62171585306439670957921322672914642799318861377}{8441957741633584092641771840606947693841005073382} a^{13} + \frac{19062380688045666400194963364113634970924964089}{4220978870816792046320885920303473846920502536691} a^{12} + \frac{2275252755655617879694547570049387336116429986}{82764291584642981300409527849087722488637304641} a^{11} - \frac{34228703340529060004369728017609781589550907165}{82764291584642981300409527849087722488637304641} a^{10} + \frac{1993598835228833065844286339862535472053074663}{9736975480546233094165826805775026175133800546} a^{9} + \frac{1844872009074940365166478661533380253040236461}{9736975480546233094165826805775026175133800546} a^{8} - \frac{5943168455042854911227888170424256472256462477}{29210926441638699282497480417325078525401401638} a^{7} + \frac{3713735839561519960002104219417580949448243795}{58421852883277398564994960834650157050802803276} a^{6} - \frac{12662631360302915056175586145267956751068646091}{58421852883277398564994960834650157050802803276} a^{5} + \frac{35594397291989852942581480806336560209666793}{859144895342314684779337659333090544864747107} a^{4} - \frac{11360114069033145154874567266061220844731989}{1145526527123086246372450212444120726486329476} a^{3} - \frac{79280253317463918068406465710845013229688691}{202151740080544631712785331607786010556411084} a^{2} - \frac{48491550782991724903801751658039095683632643}{101075870040272315856392665803893005278205542} a + \frac{1321216729033921477979697162339248650794841}{16845978340045385976065444300648834213034257}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26055225840600000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 882 |
| The 26 conjugacy class representatives for t21n24 |
| Character table for t21n24 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | $21$ | $21$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 17.7.6.1 | $x^{7} - 17$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| 17.7.6.1 | $x^{7} - 17$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |