Normalized defining polynomial
\( x^{21} - 102 x^{19} - 56 x^{18} + 4023 x^{17} + 3564 x^{16} - 79386 x^{15} - 79758 x^{14} + 890316 x^{13} + 906992 x^{12} - 6031368 x^{11} - 5993106 x^{10} + 25202042 x^{9} + 24195240 x^{8} - 64326231 x^{7} - 59521236 x^{6} + 95913018 x^{5} + 84833856 x^{4} - 75336041 x^{3} - 62360064 x^{2} + 23653968 x + 17535232 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19362861214436670419310223517907912235155456=2^{27}\cdot 3^{34}\cdot 13^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $115.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{4}$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{13} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{5} - \frac{1}{9} a^{4} + \frac{1}{9} a^{3} + \frac{1}{9} a^{2} - \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{36} a^{15} - \frac{1}{9} a^{12} - \frac{1}{6} a^{11} - \frac{1}{18} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{2}{9} a^{6} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{9} a^{3} - \frac{1}{3} a^{2} + \frac{1}{12} a + \frac{4}{9}$, $\frac{1}{36} a^{16} - \frac{1}{9} a^{13} - \frac{1}{6} a^{12} - \frac{1}{18} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{9} a^{7} - \frac{1}{2} a^{6} - \frac{1}{3} a^{5} - \frac{4}{9} a^{4} + \frac{1}{3} a^{3} + \frac{1}{12} a^{2} - \frac{2}{9} a + \frac{1}{3}$, $\frac{1}{36} a^{17} + \frac{1}{18} a^{13} + \frac{1}{9} a^{12} + \frac{1}{18} a^{11} + \frac{1}{18} a^{10} - \frac{1}{18} a^{9} + \frac{1}{9} a^{8} - \frac{1}{6} a^{7} - \frac{1}{3} a^{5} + \frac{2}{9} a^{4} - \frac{5}{36} a^{3} - \frac{1}{9} a^{2} - \frac{1}{9} a + \frac{4}{9}$, $\frac{1}{144} a^{18} - \frac{1}{72} a^{17} - \frac{1}{144} a^{16} + \frac{1}{24} a^{14} - \frac{1}{6} a^{13} - \frac{5}{36} a^{12} + \frac{1}{72} a^{11} + \frac{1}{36} a^{10} - \frac{1}{24} a^{9} - \frac{1}{18} a^{8} + \frac{1}{18} a^{7} - \frac{5}{24} a^{6} + \frac{1}{12} a^{5} + \frac{1}{48} a^{4} - \frac{31}{72} a^{3} + \frac{41}{144} a^{2} + \frac{5}{18} a - \frac{4}{9}$, $\frac{1}{144} a^{19} - \frac{1}{144} a^{17} - \frac{1}{72} a^{16} - \frac{1}{72} a^{15} + \frac{1}{36} a^{14} + \frac{5}{36} a^{13} - \frac{11}{72} a^{12} - \frac{1}{9} a^{11} - \frac{1}{24} a^{10} + \frac{1}{36} a^{9} + \frac{1}{18} a^{8} + \frac{5}{72} a^{7} + \frac{4}{9} a^{6} - \frac{5}{144} a^{5} + \frac{1}{18} a^{4} - \frac{7}{144} a^{3} - \frac{35}{72} a^{2} - \frac{5}{18} a + \frac{1}{9}$, $\frac{1}{7882568670461068902011590860268417149003111648} a^{20} + \frac{56475698544042525615284891942863184685580}{246330270951908403187862214383388035906347239} a^{19} + \frac{5922295383536016364639704210332893580052611}{3941284335230534451005795430134208574501555824} a^{18} + \frac{284014756487197271966248052140132667297575}{656880722538422408500965905022368095750259304} a^{17} - \frac{17036018432618866925444555707508854336121927}{2627522890153689634003863620089472383001037216} a^{16} + \frac{35043764527068432144976430043592433804105}{164220180634605602125241476255592023937564826} a^{15} + \frac{19226638036943167875524408796685879405873573}{1313761445076844817001931810044736191500518608} a^{14} + \frac{28243458419592738956937079296798822216962039}{1313761445076844817001931810044736191500518608} a^{13} + \frac{13197240058690633277044452053101852829995019}{218960240846140802833655301674122698583419768} a^{12} + \frac{33758846243699195651454405529861443697841377}{985321083807633612751448857533552143625388956} a^{11} - \frac{20971982061046891534485373860455503174534006}{246330270951908403187862214383388035906347239} a^{10} - \frac{654370624988002153812865395595261169556596165}{3941284335230534451005795430134208574501555824} a^{9} - \frac{131854258728763933211398221428794758539310565}{1313761445076844817001931810044736191500518608} a^{8} + \frac{17760339054143691777186858670037621741442125}{328440361269211204250482952511184047875129652} a^{7} + \frac{306253558781343196861507026695019285928532411}{2627522890153689634003863620089472383001037216} a^{6} - \frac{83319929448435253876911588862420066620182329}{656880722538422408500965905022368095750259304} a^{5} - \frac{61693986825396776244392638105036322075037427}{1313761445076844817001931810044736191500518608} a^{4} + \frac{10017041304774394292168489825377547351020739}{72986746948713600944551767224707566194473256} a^{3} + \frac{3592100687645427911506422146981810794912225123}{7882568670461068902011590860268417149003111648} a^{2} + \frac{261708884324109573937895632052268891435325415}{1970642167615267225502897715067104287250777912} a - \frac{108948636264566559952997432758132322966001268}{246330270951908403187862214383388035906347239}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5367165978220000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times F_7$ (as 21T9):
| A solvable group of order 126 |
| The 21 conjugacy class representatives for $C_3\times F_7$ |
| Character table for $C_3\times F_7$ is not computed |
Intermediate fields
| 3.3.13689.1, 7.7.138584369664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||