Normalized defining polynomial
\( x^{21} - 7 x^{20} - 74 x^{19} + 589 x^{18} + 2119 x^{17} - 20809 x^{16} - 26782 x^{15} + 399755 x^{14} + 51461 x^{13} - 4495452 x^{12} + 2641366 x^{11} + 29342562 x^{10} - 32803562 x^{9} - 100138483 x^{8} + 164165998 x^{7} + 116217006 x^{6} - 324673546 x^{5} + 109229003 x^{4} + 66372478 x^{3} - 20912877 x^{2} - 4643865 x + 27082 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1918683763390753406969558352246443638814987989=107509^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $143.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $107509$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{31006102317414334748740329077370791402380700735034781635575} a^{20} + \frac{2588600724815870726552184428014079044246596099669732672057}{31006102317414334748740329077370791402380700735034781635575} a^{19} - \frac{513120718246104963073243829487047900320184521936726024001}{31006102317414334748740329077370791402380700735034781635575} a^{18} - \frac{303859039189918961564162971823266726185352094043193495401}{1240244092696573389949613163094831656095228029401391265423} a^{17} - \frac{7375478157468636323454348991783014963604821334941731744656}{31006102317414334748740329077370791402380700735034781635575} a^{16} - \frac{108830825003135336760912018070870180821169652383528964926}{721072146916612436017216955287692823311179086861273991525} a^{15} + \frac{8266739675230202810547193958404004798111226400177858495566}{31006102317414334748740329077370791402380700735034781635575} a^{14} + \frac{10670056431931065624009172537714067112347951189428021740729}{31006102317414334748740329077370791402380700735034781635575} a^{13} - \frac{15259318198273799065167146429022020424545184146766160682808}{31006102317414334748740329077370791402380700735034781635575} a^{12} + \frac{14026295318061647077462446267011980820445052471371037733786}{31006102317414334748740329077370791402380700735034781635575} a^{11} + \frac{347066875633811421167831400838015661999306292422763529669}{6201220463482866949748065815474158280476140147006956327115} a^{10} - \frac{3814015958208666462802882596616312398928517453640178427158}{31006102317414334748740329077370791402380700735034781635575} a^{9} - \frac{3393650949821702876369213206788563085645293460101585241749}{31006102317414334748740329077370791402380700735034781635575} a^{8} + \frac{9125951048931441040715703561251010464954576188601105866856}{31006102317414334748740329077370791402380700735034781635575} a^{7} + \frac{10556467963018742867297348766816387061207116657137201276182}{31006102317414334748740329077370791402380700735034781635575} a^{6} + \frac{6393993220735935814248839522980922772372311710799700260229}{31006102317414334748740329077370791402380700735034781635575} a^{5} + \frac{1162516898556828207915181812028795342649970151682877313782}{6201220463482866949748065815474158280476140147006956327115} a^{4} - \frac{794187218994249734697697561218379353277831993812125737646}{1823888371612607926396489945727693611904747102060869507975} a^{3} + \frac{2775131092187864836541039596152788510888561679118161753171}{6201220463482866949748065815474158280476140147006956327115} a^{2} - \frac{13478230928094652450659510587674634394899544650805262439932}{31006102317414334748740329077370791402380700735034781635575} a + \frac{2781113058568598551942315973872266302566456228717368385887}{31006102317414334748740329077370791402380700735034781635575}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14849095216300000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 336 |
| The 9 conjugacy class representatives for $SO(3,7)$ |
| Character table for $SO(3,7)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 8 sibling: | data not computed |
| Degree 14 sibling: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 28 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 107509 | Data not computed | ||||||