Normalized defining polynomial
\( x^{21} - 84 x^{19} - 56 x^{18} + 2952 x^{17} + 3936 x^{16} - 54902 x^{15} - 112428 x^{14} + 551016 x^{13} + 1652592 x^{12} - 2403918 x^{11} - 12835332 x^{10} - 3648630 x^{9} + 45254088 x^{8} + 70497930 x^{7} - 13693484 x^{6} - 153698040 x^{5} - 206631792 x^{4} - 144045088 x^{3} - 58121280 x^{2} - 12915840 x - 1230080 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18960041871195105474676737728264432549221525094400=2^{32}\cdot 3^{21}\cdot 5^{2}\cdot 13\cdot 31^{2}\cdot 59\cdot 73^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $222.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13, 31, 59, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{8} a^{15} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{1}{8} a^{14} + \frac{3}{8} a^{13} + \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{11}{32} a^{10} - \frac{3}{8} a^{9} - \frac{3}{8} a^{8} - \frac{1}{2} a^{7} + \frac{9}{32} a^{6} - \frac{1}{2} a^{5} - \frac{3}{32} a^{4} + \frac{7}{16} a^{3} + \frac{9}{32} a^{2} - \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{512} a^{17} + \frac{1}{128} a^{15} - \frac{15}{64} a^{14} + \frac{3}{64} a^{13} - \frac{7}{16} a^{12} + \frac{69}{256} a^{11} - \frac{43}{128} a^{10} + \frac{11}{64} a^{9} - \frac{3}{32} a^{8} + \frac{105}{256} a^{7} - \frac{49}{128} a^{6} + \frac{29}{256} a^{5} + \frac{29}{64} a^{4} + \frac{109}{256} a^{3} + \frac{21}{128} a^{2} + \frac{27}{64} a + \frac{7}{32}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} + \frac{1}{1024} a^{16} + \frac{1}{32} a^{15} + \frac{33}{512} a^{14} - \frac{49}{256} a^{13} - \frac{731}{2048} a^{12} + \frac{25}{64} a^{11} - \frac{37}{256} a^{10} + \frac{9}{128} a^{9} + \frac{921}{2048} a^{8} + \frac{179}{512} a^{7} - \frac{799}{2048} a^{6} + \frac{413}{1024} a^{5} - \frac{635}{2048} a^{4} - \frac{11}{128} a^{3} + \frac{99}{256} a^{2} + \frac{11}{64} a - \frac{7}{128}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{1}{4096} a^{17} + \frac{15}{4096} a^{16} - \frac{255}{4096} a^{15} + \frac{215}{1024} a^{14} + \frac{4149}{16384} a^{13} - \frac{2965}{8192} a^{12} + \frac{531}{2048} a^{11} + \frac{23}{512} a^{10} - \frac{1415}{16384} a^{9} + \frac{2509}{8192} a^{8} + \frac{5961}{16384} a^{7} - \frac{721}{2048} a^{6} - \frac{6383}{16384} a^{5} + \frac{3619}{8192} a^{4} - \frac{625}{2048} a^{3} + \frac{51}{1024} a^{2} - \frac{51}{1024} a - \frac{249}{512}$, $\frac{1}{8126464} a^{20} - \frac{1}{131072} a^{19} - \frac{13}{507904} a^{18} - \frac{379}{1015808} a^{17} - \frac{3909}{1015808} a^{16} + \frac{20241}{507904} a^{15} + \frac{583125}{4063232} a^{14} + \frac{454837}{1015808} a^{13} - \frac{439337}{1015808} a^{12} - \frac{121817}{253952} a^{11} - \frac{1081927}{4063232} a^{10} - \frac{89341}{253952} a^{9} - \frac{529755}{4063232} a^{8} + \frac{114679}{2031616} a^{7} + \frac{803873}{4063232} a^{6} - \frac{204357}{1015808} a^{5} - \frac{480009}{1015808} a^{4} + \frac{2087}{7936} a^{3} - \frac{21537}{253952} a^{2} + \frac{505}{2048} a + \frac{859}{2048}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4160828920660000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5878656 |
| The 183 conjugacy class representatives for t21n137 are not computed |
| Character table for t21n137 is not computed |
Intermediate fields
| 7.7.1817487424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.26.57 | $x^{14} + 2 x^{13} - 2 x^{12} + 4 x^{11} + 4 x^{9} + 2 x^{8} + 4 x^{6} + 4 x^{5} + 2 x^{4} - 2 x^{2} + 4 x - 2$ | $14$ | $1$ | $26$ | 14T44 | $[18/7, 18/7, 18/7, 20/7, 20/7, 20/7]_{7}^{6}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $31$ | 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 31.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 31.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 31.6.0.1 | $x^{6} - 2 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 31.6.0.1 | $x^{6} - 2 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 59 | Data not computed | ||||||
| $73$ | 73.3.0.1 | $x^{3} - x + 14$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 73.9.6.1 | $x^{9} + 3066 x^{6} + 3128123 x^{3} + 1067462648$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 73.9.6.1 | $x^{9} + 3066 x^{6} + 3128123 x^{3} + 1067462648$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |