Normalized defining polynomial
\( x^{21} - 6 x^{20} - 12 x^{19} + 142 x^{18} - 145 x^{17} - 894 x^{16} + 2061 x^{15} + 1246 x^{14} - 7671 x^{13} + 4308 x^{12} + 9642 x^{11} - 12723 x^{10} - 928 x^{9} + 9880 x^{8} - 4985 x^{7} - 1363 x^{6} + 1982 x^{5} - 496 x^{4} - 104 x^{3} + 78 x^{2} - 15 x + 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18908426022848469258131981954191571483929=29^{18}\cdot 9478633^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 9478633$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{17} a^{18} - \frac{8}{17} a^{17} - \frac{8}{17} a^{16} - \frac{2}{17} a^{15} - \frac{3}{17} a^{14} - \frac{6}{17} a^{13} + \frac{3}{17} a^{12} + \frac{6}{17} a^{11} + \frac{5}{17} a^{10} + \frac{7}{17} a^{9} + \frac{8}{17} a^{8} + \frac{7}{17} a^{7} - \frac{8}{17} a^{6} - \frac{5}{17} a^{5} - \frac{7}{17} a^{4} - \frac{6}{17} a^{3} - \frac{8}{17} a^{2} + \frac{7}{17} a + \frac{1}{17}$, $\frac{1}{17} a^{19} - \frac{4}{17} a^{17} + \frac{2}{17} a^{16} - \frac{2}{17} a^{15} + \frac{4}{17} a^{14} + \frac{6}{17} a^{13} - \frac{4}{17} a^{12} + \frac{2}{17} a^{11} - \frac{4}{17} a^{10} - \frac{4}{17} a^{9} + \frac{3}{17} a^{8} - \frac{3}{17} a^{7} - \frac{1}{17} a^{6} + \frac{4}{17} a^{5} + \frac{6}{17} a^{4} - \frac{5}{17} a^{3} - \frac{6}{17} a^{2} + \frac{6}{17} a + \frac{8}{17}$, $\frac{1}{17} a^{20} + \frac{4}{17} a^{17} - \frac{4}{17} a^{15} - \frac{6}{17} a^{14} + \frac{6}{17} a^{13} - \frac{3}{17} a^{12} + \frac{3}{17} a^{11} - \frac{1}{17} a^{10} - \frac{3}{17} a^{9} - \frac{5}{17} a^{8} - \frac{7}{17} a^{7} + \frac{6}{17} a^{6} + \frac{3}{17} a^{5} + \frac{1}{17} a^{4} + \frac{4}{17} a^{3} + \frac{8}{17} a^{2} + \frac{2}{17} a + \frac{4}{17}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20651297489000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 15309 |
| The 333 conjugacy class representatives for t21n61 are not computed |
| Character table for t21n61 is not computed |
Intermediate fields
| 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | $21$ | $21$ | R | $21$ | $21$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 29 | Data not computed | ||||||
| 9478633 | Data not computed | ||||||