Normalized defining polynomial
\( x^{21} - x^{20} - 192 x^{19} + 277 x^{18} + 14834 x^{17} - 26598 x^{16} - 597785 x^{15} + 1228287 x^{14} + 13705276 x^{13} - 30630118 x^{12} - 184175217 x^{11} + 434797030 x^{10} + 1426797465 x^{9} - 3526931287 x^{8} - 5827035514 x^{7} + 15440417206 x^{6} + 9213729365 x^{5} - 30297922744 x^{4} + 2645891174 x^{3} + 12032834277 x^{2} - 399661124 x - 1092874069 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1838975925801931725577355822978754285318753465289=13^{14}\cdot 43^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $198.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(559=13\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{559}(1,·)$, $\chi_{559}(391,·)$, $\chi_{559}(9,·)$, $\chi_{559}(183,·)$, $\chi_{559}(81,·)$, $\chi_{559}(274,·)$, $\chi_{559}(341,·)$, $\chi_{559}(412,·)$, $\chi_{559}(289,·)$, $\chi_{559}(354,·)$, $\chi_{559}(100,·)$, $\chi_{559}(165,·)$, $\chi_{559}(230,·)$, $\chi_{559}(529,·)$, $\chi_{559}(170,·)$, $\chi_{559}(365,·)$, $\chi_{559}(367,·)$, $\chi_{559}(497,·)$, $\chi_{559}(393,·)$, $\chi_{559}(508,·)$, $\chi_{559}(490,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{4}$, $\frac{1}{7} a^{11} - \frac{1}{7} a^{5}$, $\frac{1}{7} a^{12} - \frac{1}{7} a^{6}$, $\frac{1}{49} a^{13} - \frac{2}{49} a^{7} + \frac{2}{7} a^{6} + \frac{1}{49} a - \frac{2}{7}$, $\frac{1}{49} a^{14} - \frac{2}{49} a^{8} + \frac{1}{49} a^{2}$, $\frac{1}{49} a^{15} - \frac{2}{49} a^{9} + \frac{1}{49} a^{3}$, $\frac{1}{343} a^{16} + \frac{2}{343} a^{15} - \frac{1}{343} a^{14} - \frac{2}{343} a^{13} + \frac{3}{49} a^{12} + \frac{1}{49} a^{11} + \frac{12}{343} a^{10} + \frac{17}{343} a^{9} - \frac{5}{343} a^{8} - \frac{24}{343} a^{7} + \frac{3}{7} a^{6} - \frac{22}{49} a^{5} - \frac{62}{343} a^{4} + \frac{30}{343} a^{3} - \frac{92}{343} a^{2} + \frac{124}{343} a - \frac{3}{49}$, $\frac{1}{343} a^{17} + \frac{2}{343} a^{15} - \frac{3}{343} a^{13} + \frac{2}{49} a^{12} - \frac{2}{343} a^{11} - \frac{1}{49} a^{10} - \frac{4}{343} a^{9} - \frac{2}{49} a^{8} + \frac{6}{343} a^{7} + \frac{20}{49} a^{6} - \frac{97}{343} a^{5} + \frac{22}{49} a^{4} + \frac{149}{343} a^{3} - \frac{5}{49} a^{2} - \frac{52}{343} a + \frac{13}{49}$, $\frac{1}{12691} a^{18} - \frac{2}{1813} a^{17} - \frac{15}{12691} a^{16} - \frac{13}{12691} a^{15} + \frac{8}{1813} a^{14} - \frac{29}{12691} a^{13} - \frac{212}{12691} a^{12} - \frac{2}{259} a^{11} + \frac{331}{12691} a^{10} + \frac{145}{12691} a^{9} + \frac{78}{1813} a^{8} + \frac{653}{12691} a^{7} - \frac{391}{12691} a^{6} + \frac{100}{1813} a^{5} + \frac{2722}{12691} a^{4} - \frac{4101}{12691} a^{3} - \frac{2}{1813} a^{2} + \frac{2414}{12691} a - \frac{13}{49}$, $\frac{1}{88837} a^{19} + \frac{3}{88837} a^{18} + \frac{6}{88837} a^{17} - \frac{9}{88837} a^{16} - \frac{165}{88837} a^{15} - \frac{372}{88837} a^{14} - \frac{446}{88837} a^{13} + \frac{5363}{88837} a^{12} - \frac{3666}{88837} a^{11} - \frac{5}{2401} a^{10} - \frac{4241}{88837} a^{9} - \frac{1979}{88837} a^{8} - \frac{125}{1813} a^{7} - \frac{11386}{88837} a^{6} - \frac{34070}{88837} a^{5} + \frac{22489}{88837} a^{4} - \frac{24406}{88837} a^{3} - \frac{22688}{88837} a^{2} + \frac{3483}{88837} a + \frac{108}{343}$, $\frac{1}{3497583302298430942417292450860678584222586365831221245435606176314467} a^{20} + \frac{6431960815037217754393207212338266233326419133311782330228569041}{3497583302298430942417292450860678584222586365831221245435606176314467} a^{19} + \frac{59354874940178783245671628059669211814452411215931012234219779523}{3497583302298430942417292450860678584222586365831221245435606176314467} a^{18} + \frac{4225200127810174736197122730607868995702842035749804229665057718628}{3497583302298430942417292450860678584222586365831221245435606176314467} a^{17} - \frac{4706724953568178164736226949160984850789350665719363923854192769947}{3497583302298430942417292450860678584222586365831221245435606176314467} a^{16} + \frac{5896143898350309960609799509209194534805767880277882422893922450036}{3497583302298430942417292450860678584222586365831221245435606176314467} a^{15} + \frac{7675172645817416524669767316846232036293473123113013968040629425136}{3497583302298430942417292450860678584222586365831221245435606176314467} a^{14} - \frac{15476204600474842612356746596838978789063534769080651512242533592556}{3497583302298430942417292450860678584222586365831221245435606176314467} a^{13} + \frac{226297525067597544025156925379284709916679939935345804849979055702580}{3497583302298430942417292450860678584222586365831221245435606176314467} a^{12} + \frac{206848017814102729958637203553910682538824436673489704465611807386260}{3497583302298430942417292450860678584222586365831221245435606176314467} a^{11} - \frac{214111093762651368993798715010928173465285419582765596466420887622696}{3497583302298430942417292450860678584222586365831221245435606176314467} a^{10} + \frac{163028833080145408309159583567534864033714459974387325225375479159266}{3497583302298430942417292450860678584222586365831221245435606176314467} a^{9} + \frac{26347641425081385176653608033469435597223399244826757770003485586642}{3497583302298430942417292450860678584222586365831221245435606176314467} a^{8} - \frac{165215831849300586743396158032538023296119532816078543816421085690579}{3497583302298430942417292450860678584222586365831221245435606176314467} a^{7} + \frac{278875507446774216493396401989775096941723261835518305736135384367627}{3497583302298430942417292450860678584222586365831221245435606176314467} a^{6} - \frac{154194842552550352806226268469082891068349705221813545654176004010580}{3497583302298430942417292450860678584222586365831221245435606176314467} a^{5} + \frac{1218039595452688325129122977399125975292684784289225946987652653979237}{3497583302298430942417292450860678584222586365831221245435606176314467} a^{4} + \frac{1189532085781434279034005236129639614290226961261313126275822635134375}{3497583302298430942417292450860678584222586365831221245435606176314467} a^{3} + \frac{1235348843558959138707559171113224090805450490864871440498255697934152}{3497583302298430942417292450860678584222586365831221245435606176314467} a^{2} + \frac{205851150460886648678178390214171695515726505948653023449886739370157}{3497583302298430942417292450860678584222586365831221245435606176314467} a + \frac{22366261766680967375033581832850870824753588262883936453823634303}{13504182634356876225549391702164782178465584424058769287396162842913}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1940642799270161000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.312481.2, 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{21}$ | $21$ | R | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{21}$ | $21$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| 43 | Data not computed | ||||||