Normalized defining polynomial
\( x^{21} - 3 x^{20} - 154 x^{19} + 702 x^{18} + 7773 x^{17} - 49095 x^{16} - 124542 x^{15} + 1333938 x^{14} - 546820 x^{13} - 14225596 x^{12} + 23697670 x^{11} + 60067750 x^{10} - 163471412 x^{9} - 64055772 x^{8} + 418640694 x^{7} - 137499162 x^{6} - 352348101 x^{5} + 231197815 x^{4} - 830652 x^{3} - 20082052 x^{2} + 2094423 x + 189587 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(183191324793504092701098288277931973797104039377054776426496=2^{32}\cdot 3^{10}\cdot 7^{15}\cdot 47^{7}\cdot 6696671^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $663.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 47, 6696671$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{14} a^{7} - \frac{1}{14} a^{6} - \frac{1}{14} a^{5} - \frac{1}{14} a^{4} - \frac{1}{14} a^{3} - \frac{1}{14} a^{2} - \frac{1}{14} a + \frac{5}{14}$, $\frac{1}{14} a^{8} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} - \frac{1}{7} a^{3} - \frac{1}{7} a^{2} + \frac{2}{7} a + \frac{5}{14}$, $\frac{1}{14} a^{9} + \frac{3}{14} a^{6} - \frac{2}{7} a^{5} + \frac{3}{14} a^{4} - \frac{2}{7} a^{3} - \frac{5}{14} a^{2} + \frac{3}{14} a + \frac{3}{14}$, $\frac{1}{14} a^{10} - \frac{1}{14} a^{6} + \frac{3}{7} a^{5} - \frac{1}{14} a^{4} - \frac{1}{7} a^{3} + \frac{3}{7} a^{2} + \frac{3}{7} a - \frac{1}{14}$, $\frac{1}{14} a^{11} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} + \frac{2}{7} a^{4} + \frac{5}{14} a^{3} - \frac{1}{7} a^{2} - \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{28} a^{12} - \frac{1}{28} a^{8} - \frac{1}{14} a^{6} + \frac{1}{7} a^{5} + \frac{5}{28} a^{4} + \frac{3}{7} a^{3} - \frac{1}{14} a^{2} - \frac{2}{7} a - \frac{9}{28}$, $\frac{1}{28} a^{13} - \frac{1}{28} a^{9} + \frac{1}{14} a^{6} + \frac{3}{28} a^{5} + \frac{5}{14} a^{4} - \frac{1}{7} a^{3} - \frac{5}{14} a^{2} - \frac{11}{28} a + \frac{5}{14}$, $\frac{1}{588} a^{14} - \frac{1}{294} a^{13} + \frac{1}{98} a^{12} + \frac{1}{42} a^{11} - \frac{13}{588} a^{10} - \frac{1}{49} a^{9} - \frac{3}{98} a^{8} - \frac{1}{49} a^{7} - \frac{19}{588} a^{6} + \frac{109}{294} a^{5} - \frac{1}{7} a^{4} + \frac{143}{294} a^{3} - \frac{205}{588} a^{2} - \frac{62}{147} a + \frac{22}{147}$, $\frac{1}{588} a^{15} + \frac{1}{294} a^{13} + \frac{5}{588} a^{12} + \frac{5}{196} a^{11} + \frac{1}{147} a^{10} + \frac{5}{196} a^{8} - \frac{1}{588} a^{7} - \frac{19}{98} a^{6} + \frac{113}{294} a^{5} + \frac{265}{588} a^{4} - \frac{263}{588} a^{3} + \frac{13}{42} a^{2} + \frac{22}{49} a - \frac{13}{588}$, $\frac{1}{1764} a^{16} - \frac{1}{1764} a^{15} - \frac{1}{1764} a^{14} - \frac{1}{147} a^{13} + \frac{13}{1764} a^{12} - \frac{53}{1764} a^{11} - \frac{1}{252} a^{10} + \frac{5}{294} a^{9} - \frac{25}{1764} a^{8} + \frac{1}{36} a^{7} - \frac{401}{1764} a^{6} - \frac{11}{147} a^{5} - \frac{169}{588} a^{4} + \frac{103}{252} a^{3} + \frac{781}{1764} a^{2} - \frac{71}{882} a - \frac{157}{882}$, $\frac{1}{1764} a^{17} + \frac{1}{1764} a^{15} - \frac{1}{1764} a^{14} - \frac{17}{1764} a^{13} - \frac{4}{441} a^{12} + \frac{3}{196} a^{11} + \frac{5}{1764} a^{10} - \frac{13}{1764} a^{9} + \frac{1}{42} a^{8} + \frac{5}{1764} a^{7} - \frac{347}{1764} a^{6} + \frac{43}{196} a^{5} - \frac{110}{441} a^{4} - \frac{517}{1764} a^{3} - \frac{215}{588} a^{2} - \frac{125}{294} a + \frac{257}{882}$, $\frac{1}{455112} a^{18} - \frac{1}{18963} a^{17} - \frac{1}{9288} a^{16} + \frac{26}{56889} a^{15} - \frac{2}{6321} a^{14} - \frac{1199}{227556} a^{13} - \frac{1991}{113778} a^{12} + \frac{1201}{37926} a^{11} - \frac{6661}{227556} a^{10} + \frac{1135}{75852} a^{9} - \frac{6649}{227556} a^{8} - \frac{401}{56889} a^{7} - \frac{6803}{113778} a^{6} - \frac{295}{5292} a^{5} - \frac{59}{8127} a^{4} + \frac{52039}{113778} a^{3} - \frac{156323}{455112} a^{2} - \frac{1217}{10836} a - \frac{491}{10584}$, $\frac{1}{16384032} a^{19} - \frac{13}{16384032} a^{18} - \frac{1345}{16384032} a^{17} + \frac{1733}{16384032} a^{16} - \frac{625}{4096008} a^{15} + \frac{101}{4096008} a^{14} - \frac{27749}{8192016} a^{13} + \frac{21841}{8192016} a^{12} - \frac{229771}{8192016} a^{11} + \frac{158335}{8192016} a^{10} - \frac{397}{41796} a^{9} - \frac{59869}{2048004} a^{8} + \frac{81899}{4096008} a^{7} + \frac{275855}{1365336} a^{6} - \frac{175243}{8192016} a^{5} + \frac{210391}{8192016} a^{4} - \frac{1354417}{5461344} a^{3} + \frac{4283303}{16384032} a^{2} + \frac{810865}{16384032} a - \frac{181903}{381024}$, $\frac{1}{187406212863381077500072582501098512706816} a^{20} - \frac{1168675509635594468746072200431165}{46851553215845269375018145625274628176704} a^{19} - \frac{13459308236628849092145921781447969}{31234368810563512916678763750183085451136} a^{18} + \frac{3363183776539615545150672768409624171}{15617184405281756458339381875091542725568} a^{17} - \frac{840918811364903233733179195706113093}{6940970846791891759261947500040685655808} a^{16} + \frac{10886137456216007047376042728356725}{30265861250546039647944538517619268848} a^{15} + \frac{2631371695118478546614652417163102603}{3470485423395945879630973750020342827904} a^{14} - \frac{528738716514671111705701151879517257}{976074025330109778646211367193221420348} a^{13} + \frac{566939270420641426103314459271573203727}{46851553215845269375018145625274628176704} a^{12} - \frac{331115040214849339315300519119762669175}{23425776607922634687509072812637314088352} a^{11} + \frac{400169399368598841559653679372513389481}{13386158061670076964290898750078465193344} a^{10} + \frac{168575053775167209733332189826375163123}{7808592202640878229169690937545771362784} a^{9} + \frac{1515224877702442621069299856186974150481}{46851553215845269375018145625274628176704} a^{8} + \frac{85296648998109616708186078272500749235}{5856444151980658671877268203159328522088} a^{7} - \frac{11226066327649512194354465665660824119029}{93703106431690538750036291250549256353408} a^{6} + \frac{678534666409873083800693664022311650119}{11712888303961317343754536406318657044176} a^{5} - \frac{54430199408145755594395919513802428638133}{187406212863381077500072582501098512706816} a^{4} - \frac{22405480294525561452790557093586816804777}{46851553215845269375018145625274628176704} a^{3} + \frac{2022349883553723418727045204353037747185}{23425776607922634687509072812637314088352} a^{2} - \frac{13626998779900900406805164463208435259387}{46851553215845269375018145625274628176704} a + \frac{1897365872641621740498238716475255081321}{4358284020078629709304013546537174714112}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 428638014673000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 49392 |
| The 51 conjugacy class representatives for t21n87 are not computed |
| Character table for t21n87 is not computed |
Intermediate fields
| 3.3.564.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/41.7.0.1}{7} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||
| 47 | Data not computed | ||||||
| 6696671 | Data not computed | ||||||