Normalized defining polynomial
\( x^{21} - 63 x^{19} + 1617 x^{17} - 21952 x^{15} - 546 x^{14} + 171794 x^{13} + 17402 x^{12} - 797181 x^{11} - 193844 x^{10} + 2187409 x^{9} + 942158 x^{8} - 3354089 x^{7} - 2150512 x^{6} + 2406222 x^{5} + 2142868 x^{4} - 378651 x^{3} - 642096 x^{2} - 80808 x + 18772 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17175560156999570560463119411801776147398656=2^{26}\cdot 7^{21}\cdot 13^{6}\cdot 37^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $114.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{139} a^{18} - \frac{57}{139} a^{17} - \frac{46}{139} a^{16} - \frac{64}{139} a^{15} + \frac{1}{139} a^{14} - \frac{26}{139} a^{13} - \frac{33}{139} a^{12} + \frac{66}{139} a^{11} - \frac{34}{139} a^{10} - \frac{23}{139} a^{9} + \frac{34}{139} a^{8} + \frac{39}{139} a^{7} - \frac{34}{139} a^{6} + \frac{34}{139} a^{5} + \frac{15}{139} a^{4} - \frac{4}{139} a^{3} - \frac{25}{139} a^{2} + \frac{60}{139} a + \frac{40}{139}$, $\frac{1}{139} a^{19} + \frac{41}{139} a^{17} - \frac{45}{139} a^{16} - \frac{33}{139} a^{15} + \frac{31}{139} a^{14} + \frac{14}{139} a^{13} - \frac{8}{139} a^{12} - \frac{25}{139} a^{11} - \frac{15}{139} a^{10} - \frac{26}{139} a^{9} + \frac{31}{139} a^{8} - \frac{35}{139} a^{7} + \frac{42}{139} a^{6} + \frac{7}{139} a^{5} + \frac{17}{139} a^{4} + \frac{25}{139} a^{3} + \frac{25}{139} a^{2} - \frac{15}{139} a + \frac{56}{139}$, $\frac{1}{3038038154211018945035048004191895233818} a^{20} - \frac{3740068251469822013763713275244773291}{1519019077105509472517524002095947616909} a^{19} - \frac{6885288444507547650832143016002578329}{3038038154211018945035048004191895233818} a^{18} - \frac{667848700849556923351987005579978461673}{1519019077105509472517524002095947616909} a^{17} + \frac{1192673625613111600033823363307971287465}{3038038154211018945035048004191895233818} a^{16} + \frac{284549241372768685332370698174353176092}{1519019077105509472517524002095947616909} a^{15} + \frac{175516158453855720335469773346871109468}{1519019077105509472517524002095947616909} a^{14} - \frac{3803249644181926037781760319868948615}{11087730489821237025675357679532464357} a^{13} + \frac{650321282777451794877039637940365197589}{1519019077105509472517524002095947616909} a^{12} + \frac{503590591744668701540320678531876900697}{1519019077105509472517524002095947616909} a^{11} - \frac{381445051058932935544398070733214151275}{3038038154211018945035048004191895233818} a^{10} - \frac{56375935684634709474950731303101964202}{1519019077105509472517524002095947616909} a^{9} + \frac{792986158338089261945849434864146685723}{3038038154211018945035048004191895233818} a^{8} + \frac{639851321699455856781388057502278770771}{1519019077105509472517524002095947616909} a^{7} - \frac{1024070089045192335597984184415886102933}{3038038154211018945035048004191895233818} a^{6} + \frac{536496134680760427634667915842469914240}{1519019077105509472517524002095947616909} a^{5} - \frac{559343376657490886983773730740552871470}{1519019077105509472517524002095947616909} a^{4} + \frac{159227254429194153265701867016824098972}{1519019077105509472517524002095947616909} a^{3} - \frac{1398778493566596643820933275426259817335}{3038038154211018945035048004191895233818} a^{2} - \frac{479196617181007773547939163882941062408}{1519019077105509472517524002095947616909} a - \frac{2075999295572754852290527293659582649}{10928194799320212032500172676949263431}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2270588222930000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12348 |
| The 45 conjugacy class representatives for t21n55 |
| Character table for t21n55 is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 13 | Data not computed | ||||||
| 37 | Data not computed | ||||||