Normalized defining polynomial
\( x^{21} - 4 x^{20} - 64 x^{19} + 186 x^{18} + 1724 x^{17} - 3096 x^{16} - 24588 x^{15} + 21110 x^{14} + 195304 x^{13} - 27551 x^{12} - 844197 x^{11} - 320638 x^{10} + 1805255 x^{9} + 1352446 x^{8} - 1520495 x^{7} - 1550169 x^{6} + 381991 x^{5} + 548114 x^{4} - 51323 x^{3} - 71820 x^{2} + 6678 x + 1757 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(171318696215827426793735775028238670573001=7^{14}\cdot 43^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(301=7\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{301}(256,·)$, $\chi_{301}(1,·)$, $\chi_{301}(130,·)$, $\chi_{301}(4,·)$, $\chi_{301}(193,·)$, $\chi_{301}(64,·)$, $\chi_{301}(11,·)$, $\chi_{301}(78,·)$, $\chi_{301}(207,·)$, $\chi_{301}(16,·)$, $\chi_{301}(274,·)$, $\chi_{301}(219,·)$, $\chi_{301}(226,·)$, $\chi_{301}(102,·)$, $\chi_{301}(170,·)$, $\chi_{301}(107,·)$, $\chi_{301}(44,·)$, $\chi_{301}(176,·)$, $\chi_{301}(183,·)$, $\chi_{301}(121,·)$, $\chi_{301}(127,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7} a^{15} + \frac{1}{7} a^{14} - \frac{1}{7} a^{13} + \frac{1}{7} a^{12} + \frac{2}{7} a^{11} - \frac{1}{7} a^{10} + \frac{3}{7} a^{9} + \frac{1}{7} a^{8} + \frac{2}{7} a^{7} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} + \frac{1}{7} a^{3}$, $\frac{1}{7} a^{16} - \frac{2}{7} a^{14} + \frac{2}{7} a^{13} + \frac{1}{7} a^{12} - \frac{3}{7} a^{11} - \frac{3}{7} a^{10} - \frac{2}{7} a^{9} + \frac{1}{7} a^{8} - \frac{3}{7} a^{7} + \frac{2}{7} a^{4} - \frac{1}{7} a^{3}$, $\frac{1}{49} a^{17} - \frac{3}{49} a^{16} - \frac{3}{49} a^{15} - \frac{3}{7} a^{14} - \frac{4}{49} a^{13} + \frac{2}{7} a^{12} + \frac{4}{49} a^{11} + \frac{1}{49} a^{10} + \frac{4}{49} a^{9} + \frac{3}{7} a^{7} - \frac{20}{49} a^{6} - \frac{4}{49} a^{5} - \frac{20}{49} a^{4} - \frac{19}{49} a^{3} - \frac{2}{7} a^{2} + \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{49} a^{18} + \frac{2}{49} a^{16} - \frac{2}{49} a^{15} - \frac{18}{49} a^{14} + \frac{2}{49} a^{13} - \frac{10}{49} a^{12} - \frac{22}{49} a^{11} - \frac{2}{7} a^{10} + \frac{19}{49} a^{9} + \frac{2}{7} a^{8} + \frac{8}{49} a^{7} + \frac{6}{49} a^{6} - \frac{11}{49} a^{5} + \frac{19}{49} a^{4} - \frac{8}{49} a^{3} - \frac{3}{7} a^{2} + \frac{1}{7}$, $\frac{1}{49} a^{19} - \frac{3}{49} a^{16} + \frac{2}{49} a^{15} + \frac{23}{49} a^{14} + \frac{19}{49} a^{13} + \frac{6}{49} a^{12} - \frac{22}{49} a^{11} + \frac{24}{49} a^{10} + \frac{13}{49} a^{9} + \frac{15}{49} a^{8} + \frac{13}{49} a^{7} + \frac{15}{49} a^{6} + \frac{13}{49} a^{5} + \frac{4}{49} a^{4} - \frac{11}{49} a^{3} - \frac{3}{7} a^{2} + \frac{2}{7} a - \frac{3}{7}$, $\frac{1}{48554480969669843311746601589140852912281833} a^{20} + \frac{437819134590870011939769998268536781506339}{48554480969669843311746601589140852912281833} a^{19} + \frac{355339073439566147293731951457149580587173}{48554480969669843311746601589140852912281833} a^{18} - \frac{11010451790449536066461298476143775969756}{6936354424238549044535228798448693273183119} a^{17} + \frac{521830581650921296921666010090385341148456}{48554480969669843311746601589140852912281833} a^{16} + \frac{264007482905892794618976509812502732584453}{6936354424238549044535228798448693273183119} a^{15} - \frac{5348314293406639043932414341839307677700543}{48554480969669843311746601589140852912281833} a^{14} - \frac{4204626640681563991000421501165907655595153}{48554480969669843311746601589140852912281833} a^{13} + \frac{16894200777192460387025919753887545935010212}{48554480969669843311746601589140852912281833} a^{12} - \frac{349033122319294916768591753976738671070330}{990907774891221292076461256921241896169017} a^{11} + \frac{2711815990851674930382293716919258280574972}{6936354424238549044535228798448693273183119} a^{10} - \frac{19957117135776963360563341262027579752291860}{48554480969669843311746601589140852912281833} a^{9} - \frac{23364394194418364092558747173697329149033262}{48554480969669843311746601589140852912281833} a^{8} + \frac{10312819118782822591786446906637783219634837}{48554480969669843311746601589140852912281833} a^{7} + \frac{2614915781449557312610780389409629702857702}{48554480969669843311746601589140852912281833} a^{6} + \frac{1876979557602360964090963131439057992131493}{6936354424238549044535228798448693273183119} a^{5} - \frac{2562811416364194060742890974299456270835274}{6936354424238549044535228798448693273183119} a^{4} - \frac{1183251966773673731311515794756204475612530}{6936354424238549044535228798448693273183119} a^{3} + \frac{104837300059569930578896771348990092628889}{990907774891221292076461256921241896169017} a^{2} - \frac{267084280029313463552296289690441078737330}{990907774891221292076461256921241896169017} a - \frac{230762981945737718488778666666581802562838}{990907774891221292076461256921241896169017}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140330847878000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | $21$ | R | $21$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | R | $21$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $43$ | 43.7.6.1 | $x^{7} - 43$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 43.7.6.1 | $x^{7} - 43$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 43.7.6.1 | $x^{7} - 43$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |