Normalized defining polynomial
\( x^{21} - 4 x^{20} - 74 x^{19} + 326 x^{18} + 1940 x^{17} - 9666 x^{16} - 22526 x^{15} + 138634 x^{14} + 103892 x^{13} - 1050735 x^{12} + 79957 x^{11} + 4265962 x^{10} - 2409705 x^{9} - 8725818 x^{8} + 7775839 x^{7} + 7456241 x^{6} - 8733417 x^{5} - 1687630 x^{4} + 3268313 x^{3} - 336298 x^{2} - 152624 x + 21401 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(168156777279482171397813050167498470631248481=19^{14}\cdot 29^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $127.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(551=19\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{551}(1,·)$, $\chi_{551}(197,·)$, $\chi_{551}(7,·)$, $\chi_{551}(140,·)$, $\chi_{551}(429,·)$, $\chi_{551}(400,·)$, $\chi_{551}(210,·)$, $\chi_{551}(83,·)$, $\chi_{551}(20,·)$, $\chi_{551}(277,·)$, $\chi_{551}(343,·)$, $\chi_{551}(349,·)$, $\chi_{551}(286,·)$, $\chi_{551}(45,·)$, $\chi_{551}(239,·)$, $\chi_{551}(368,·)$, $\chi_{551}(49,·)$, $\chi_{551}(372,·)$, $\chi_{551}(30,·)$, $\chi_{551}(248,·)$, $\chi_{551}(315,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{17} a^{18} + \frac{5}{17} a^{17} + \frac{7}{17} a^{16} + \frac{1}{17} a^{15} + \frac{7}{17} a^{14} + \frac{6}{17} a^{13} - \frac{8}{17} a^{12} - \frac{8}{17} a^{11} - \frac{6}{17} a^{10} + \frac{4}{17} a^{9} + \frac{1}{17} a^{8} + \frac{7}{17} a^{7} - \frac{3}{17} a^{6} + \frac{7}{17} a^{5} - \frac{4}{17} a^{4} + \frac{6}{17} a^{3} + \frac{7}{17} a^{2} - \frac{5}{17} a + \frac{7}{17}$, $\frac{1}{17} a^{19} - \frac{1}{17} a^{17} + \frac{2}{17} a^{15} + \frac{5}{17} a^{14} - \frac{4}{17} a^{13} - \frac{2}{17} a^{12} - \frac{2}{17} a^{9} + \frac{2}{17} a^{8} - \frac{4}{17} a^{7} + \frac{5}{17} a^{6} - \frac{5}{17} a^{5} - \frac{8}{17} a^{4} - \frac{6}{17} a^{3} - \frac{6}{17} a^{2} - \frac{2}{17} a - \frac{1}{17}$, $\frac{1}{332136228022977283712378590606514320385514036099305329} a^{20} - \frac{8448367280233582194671637978188004938129318894342824}{332136228022977283712378590606514320385514036099305329} a^{19} + \frac{1052456353184180384567052479577063171359524560629931}{332136228022977283712378590606514320385514036099305329} a^{18} - \frac{124831461531128304751224274144359802986805491805891994}{332136228022977283712378590606514320385514036099305329} a^{17} - \frac{37718167606464148336905341006305228591401990381078998}{332136228022977283712378590606514320385514036099305329} a^{16} - \frac{107947375062968502908633358148560007356503521940421170}{332136228022977283712378590606514320385514036099305329} a^{15} - \frac{44997737068926640634866314180900380114297511539702825}{332136228022977283712378590606514320385514036099305329} a^{14} - \frac{70575008286826297236063973957623673893159340550603243}{332136228022977283712378590606514320385514036099305329} a^{13} + \frac{77756830528815082950653364311992518313480414463628488}{332136228022977283712378590606514320385514036099305329} a^{12} - \frac{5170366039080690889804340079976568258855547529862163}{332136228022977283712378590606514320385514036099305329} a^{11} + \frac{43767643597249141736994621222315768366606697071992786}{332136228022977283712378590606514320385514036099305329} a^{10} - \frac{8321066928532090328718128971533908806808724954660429}{19537425177822193159551681800383195316794943299959137} a^{9} - \frac{133462405361555139173021907263945674987662517903631613}{332136228022977283712378590606514320385514036099305329} a^{8} + \frac{132525045472420706804394880935523197731048438597611113}{332136228022977283712378590606514320385514036099305329} a^{7} + \frac{42794740401876801212920775497491785703536780376540997}{332136228022977283712378590606514320385514036099305329} a^{6} - \frac{73189454548401829645679379895005197524152170060525405}{332136228022977283712378590606514320385514036099305329} a^{5} + \frac{99238886596569307023684793809221928950860621354039545}{332136228022977283712378590606514320385514036099305329} a^{4} - \frac{75277709390753377134021616228633906856594338361627951}{332136228022977283712378590606514320385514036099305329} a^{3} - \frac{305270580584756271129752509954967551070512313720732}{332136228022977283712378590606514320385514036099305329} a^{2} - \frac{45527526969482990436173426744148859760495322625779598}{332136228022977283712378590606514320385514036099305329} a + \frac{157669681541630450972679913396758899003771444348299490}{332136228022977283712378590606514320385514036099305329}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1584733822664509.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.361.1, 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | R | $21$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{7}$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 19 | Data not computed | ||||||
| 29 | Data not computed | ||||||