Normalized defining polynomial
\( x^{21} - 6 x^{20} - 30 x^{19} + 213 x^{18} + 306 x^{17} - 2967 x^{16} - 955 x^{15} + 21012 x^{14} - 3636 x^{13} - 82163 x^{12} + 34194 x^{11} + 179256 x^{10} - 94753 x^{9} - 207960 x^{8} + 117288 x^{7} + 111435 x^{6} - 64710 x^{5} - 15456 x^{4} + 13205 x^{3} - 2085 x^{2} + 99 x - 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(162172589188461288482391931972916633457=3^{28}\cdot 577^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{610356691403163221781423451962979} a^{20} + \frac{120920033985251318200640443232069}{610356691403163221781423451962979} a^{19} - \frac{298940816663538278122471804757159}{610356691403163221781423451962979} a^{18} - \frac{193398901649460211138911239239728}{610356691403163221781423451962979} a^{17} + \frac{125858501012869838160191626859022}{610356691403163221781423451962979} a^{16} + \frac{233118050763135893850562544458541}{610356691403163221781423451962979} a^{15} - \frac{255670425106578197676254206352417}{610356691403163221781423451962979} a^{14} - \frac{180482529042977819404629332156620}{610356691403163221781423451962979} a^{13} - \frac{78695826916383973691890985523745}{610356691403163221781423451962979} a^{12} - \frac{176978586260430073586973604372892}{610356691403163221781423451962979} a^{11} + \frac{9568793064480240998153510747066}{610356691403163221781423451962979} a^{10} + \frac{174525912264644152566988387129446}{610356691403163221781423451962979} a^{9} - \frac{42532927069460084782808353602267}{610356691403163221781423451962979} a^{8} - \frac{155416912739475075923333222972229}{610356691403163221781423451962979} a^{7} - \frac{33924744733265734730278921277502}{610356691403163221781423451962979} a^{6} - \frac{271210860133578914828317149680482}{610356691403163221781423451962979} a^{5} + \frac{73437550921219518468509742018104}{610356691403163221781423451962979} a^{4} - \frac{134323852427311462149752053822608}{610356691403163221781423451962979} a^{3} - \frac{167288091694170259087152505783448}{610356691403163221781423451962979} a^{2} - \frac{30785918724921341463877406542799}{610356691403163221781423451962979} a - \frac{82859313644976441799548311679348}{610356691403163221781423451962979}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1603475686170 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times D_7$ (as 21T3):
| A solvable group of order 42 |
| The 15 conjugacy class representatives for $C_3\times D_7$ |
| Character table for $C_3\times D_7$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 577 | Data not computed | ||||||