Normalized defining polynomial
\( x^{21} - 4 x^{20} - 102 x^{19} + 425 x^{18} + 3920 x^{17} - 17149 x^{16} - 73530 x^{15} + 346443 x^{14} + 712451 x^{13} - 3821466 x^{12} - 3325067 x^{11} + 23337412 x^{10} + 4524633 x^{9} - 75328115 x^{8} + 12733514 x^{7} + 114123433 x^{6} - 29226462 x^{5} - 71499935 x^{4} + 6060357 x^{3} + 17526365 x^{2} + 3735328 x + 144611 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(159304365023255555687695016934897349651835476681=29^{18}\cdot 31^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $176.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(899=29\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{899}(1,·)$, $\chi_{899}(645,·)$, $\chi_{899}(842,·)$, $\chi_{899}(459,·)$, $\chi_{899}(397,·)$, $\chi_{899}(335,·)$, $\chi_{899}(342,·)$, $\chi_{899}(25,·)$, $\chi_{899}(284,·)$, $\chi_{899}(94,·)$, $\chi_{899}(36,·)$, $\chi_{899}(807,·)$, $\chi_{899}(552,·)$, $\chi_{899}(745,·)$, $\chi_{899}(683,·)$, $\chi_{899}(749,·)$, $\chi_{899}(687,·)$, $\chi_{899}(625,·)$, $\chi_{899}(373,·)$, $\chi_{899}(315,·)$, $\chi_{899}(893,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{34} a^{18} + \frac{5}{34} a^{17} - \frac{2}{17} a^{14} + \frac{1}{17} a^{13} - \frac{11}{34} a^{12} + \frac{8}{17} a^{11} + \frac{8}{17} a^{10} + \frac{7}{34} a^{9} - \frac{1}{34} a^{8} - \frac{3}{17} a^{7} - \frac{1}{2} a^{6} - \frac{8}{17} a^{5} + \frac{3}{17} a^{4} - \frac{3}{17} a^{3} + \frac{9}{34} a^{2} + \frac{9}{34} a - \frac{15}{34}$, $\frac{1}{34} a^{19} - \frac{4}{17} a^{17} - \frac{2}{17} a^{15} + \frac{5}{34} a^{14} + \frac{13}{34} a^{13} - \frac{7}{17} a^{12} - \frac{13}{34} a^{11} + \frac{6}{17} a^{10} + \frac{15}{34} a^{9} - \frac{1}{34} a^{8} + \frac{13}{34} a^{7} + \frac{1}{34} a^{6} + \frac{1}{34} a^{5} - \frac{1}{17} a^{4} - \frac{6}{17} a^{3} + \frac{15}{34} a^{2} - \frac{9}{34} a - \frac{5}{17}$, $\frac{1}{191039108129151735074665391998546933538290391932549743264067642} a^{20} - \frac{1173830730856315328300532164754219167798106351040679071476207}{95519554064575867537332695999273466769145195966274871632033821} a^{19} + \frac{258543551806188969416200171895551892309265085795572053319311}{191039108129151735074665391998546933538290391932549743264067642} a^{18} + \frac{1527334579006198388328846355813411623266593586500496649187135}{11237594595832455004392081882267466678722964231326455486121626} a^{17} - \frac{24503450266062725092312199182882086283614373260845781383193201}{191039108129151735074665391998546933538290391932549743264067642} a^{16} + \frac{31421203547177961117007495836233457865595765751189623009743}{547389994639403252362938085955721872602551266282377487862658} a^{15} + \frac{32942840224152517859228005576530364592686979290228491590801877}{191039108129151735074665391998546933538290391932549743264067642} a^{14} - \frac{2557617981324728158780123796544762523470465141667027590551847}{5618797297916227502196040941133733339361482115663227743060813} a^{13} - \frac{11588707443841951160092595547873110080882031460299307030837527}{191039108129151735074665391998546933538290391932549743264067642} a^{12} - \frac{37505395145352787340555681067007914483156876054688165980573123}{95519554064575867537332695999273466769145195966274871632033821} a^{11} + \frac{66364931898248500195274279955012375597456917664209378977944863}{191039108129151735074665391998546933538290391932549743264067642} a^{10} - \frac{51828895129050527086881452287578291667069301124502889876530585}{191039108129151735074665391998546933538290391932549743264067642} a^{9} - \frac{93282707110722061893857042421477857840608456298367017905935391}{191039108129151735074665391998546933538290391932549743264067642} a^{8} - \frac{80635037927027310355805415018504957000303352171426485064247243}{191039108129151735074665391998546933538290391932549743264067642} a^{7} - \frac{81786845182915608170378715807273932051841856241294088108803571}{191039108129151735074665391998546933538290391932549743264067642} a^{6} - \frac{33338477099023704666141703740588595659674647124377156404279006}{95519554064575867537332695999273466769145195966274871632033821} a^{5} + \frac{68215525606255009570457813244804037025291661390880091752298395}{191039108129151735074665391998546933538290391932549743264067642} a^{4} + \frac{43967335735511088309341000309060851970168231017768044719324197}{95519554064575867537332695999273466769145195966274871632033821} a^{3} + \frac{920722818332009031294584773858749593246983111310982616725746}{95519554064575867537332695999273466769145195966274871632033821} a^{2} + \frac{16677300382397707163359853982456544412939816546507186472420945}{95519554064575867537332695999273466769145195966274871632033821} a - \frac{2522259156157470745549317213051601775331580730450859657964811}{11237594595832455004392081882267466678722964231326455486121626}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 51659455204894376 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.961.1, 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | $21$ | $21$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | $21$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | R | R | $21$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{7}$ | $21$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 31 | Data not computed | ||||||