Normalized defining polynomial
\( x^{21} - 9 x^{20} - 70 x^{19} + 768 x^{18} + 1466 x^{17} - 25320 x^{16} + 779 x^{15} + 409371 x^{14} - 412080 x^{13} - 3420406 x^{12} + 5652363 x^{11} + 14095477 x^{10} - 32356568 x^{9} - 22553276 x^{8} + 85473488 x^{7} - 10352270 x^{6} - 87722101 x^{5} + 49086315 x^{4} + 6245027 x^{3} - 3047523 x^{2} - 337401 x + 1593 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(159218785599036824660651669785398798634009=877^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $877$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{9} - \frac{1}{12} a^{8} - \frac{1}{4} a^{7} - \frac{1}{6} a^{6} - \frac{1}{6} a^{5} + \frac{1}{12} a^{4} - \frac{1}{3} a^{3} + \frac{1}{12} a^{2} - \frac{1}{12} a + \frac{1}{4}$, $\frac{1}{24} a^{12} - \frac{1}{24} a^{10} - \frac{1}{24} a^{9} - \frac{1}{12} a^{7} - \frac{1}{12} a^{6} + \frac{1}{24} a^{5} - \frac{1}{24} a^{4} - \frac{5}{24} a^{3} - \frac{1}{6} a^{2} + \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{24} a^{13} - \frac{1}{24} a^{11} - \frac{1}{24} a^{10} - \frac{1}{12} a^{8} - \frac{1}{12} a^{7} + \frac{1}{24} a^{6} - \frac{1}{24} a^{5} - \frac{5}{24} a^{4} - \frac{1}{6} a^{3} + \frac{1}{8} a^{2} + \frac{1}{8} a$, $\frac{1}{24} a^{14} - \frac{1}{24} a^{11} - \frac{1}{24} a^{10} - \frac{1}{8} a^{9} - \frac{1}{12} a^{8} - \frac{1}{24} a^{7} - \frac{1}{8} a^{6} - \frac{1}{6} a^{5} - \frac{5}{24} a^{4} - \frac{1}{12} a^{3} - \frac{1}{24} a^{2} + \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{42096} a^{15} - \frac{719}{42096} a^{14} - \frac{725}{42096} a^{13} + \frac{439}{42096} a^{12} - \frac{453}{14032} a^{11} - \frac{553}{42096} a^{10} + \frac{299}{42096} a^{9} + \frac{1981}{42096} a^{8} - \frac{571}{10524} a^{7} + \frac{103}{21048} a^{6} - \frac{3919}{21048} a^{5} + \frac{3017}{21048} a^{4} + \frac{10747}{42096} a^{3} - \frac{4599}{14032} a^{2} + \frac{2293}{14032} a + \frac{4355}{14032}$, $\frac{1}{126288} a^{16} - \frac{16}{7893} a^{14} - \frac{413}{31572} a^{13} + \frac{79}{31572} a^{12} - \frac{1051}{31572} a^{11} + \frac{382}{7893} a^{10} - \frac{1843}{21048} a^{9} + \frac{11839}{126288} a^{8} + \frac{7393}{31572} a^{7} - \frac{899}{63144} a^{6} - \frac{9221}{63144} a^{5} + \frac{27337}{126288} a^{4} + \frac{7495}{63144} a^{3} + \frac{11623}{63144} a^{2} - \frac{459}{7016} a - \frac{2805}{14032}$, $\frac{1}{126288} a^{17} - \frac{1}{126288} a^{15} - \frac{827}{126288} a^{14} - \frac{389}{126288} a^{13} + \frac{2501}{126288} a^{12} - \frac{3665}{126288} a^{11} - \frac{1579}{42096} a^{10} + \frac{4577}{63144} a^{9} + \frac{8527}{126288} a^{8} - \frac{2665}{31572} a^{7} + \frac{815}{7893} a^{6} + \frac{12421}{126288} a^{5} + \frac{4289}{31572} a^{4} - \frac{4081}{126288} a^{3} - \frac{3827}{42096} a^{2} - \frac{1507}{10524} a + \frac{3589}{14032}$, $\frac{1}{221509152} a^{18} - \frac{91}{55377288} a^{17} - \frac{133}{110754576} a^{16} - \frac{1141}{221509152} a^{15} - \frac{2259143}{221509152} a^{14} - \frac{349633}{24612128} a^{13} - \frac{2063663}{221509152} a^{12} - \frac{169349}{73836384} a^{11} + \frac{75549}{6153032} a^{10} + \frac{741517}{73836384} a^{9} + \frac{811477}{73836384} a^{8} - \frac{1389893}{27688644} a^{7} - \frac{2814397}{24612128} a^{6} + \frac{15824695}{110754576} a^{5} + \frac{24468991}{110754576} a^{4} - \frac{6385561}{221509152} a^{3} + \frac{4836367}{13844322} a^{2} - \frac{31044329}{73836384} a - \frac{3673149}{24612128}$, $\frac{1}{221509152} a^{19} + \frac{271}{110754576} a^{17} + \frac{259}{221509152} a^{16} + \frac{2137}{221509152} a^{15} - \frac{42349}{221509152} a^{14} - \frac{2292311}{221509152} a^{13} - \frac{939365}{73836384} a^{12} - \frac{46162}{6922161} a^{11} + \frac{25603279}{221509152} a^{10} + \frac{23593643}{221509152} a^{9} - \frac{1076609}{27688644} a^{8} + \frac{28859119}{221509152} a^{7} + \frac{24862843}{110754576} a^{6} - \frac{25909037}{110754576} a^{5} - \frac{1947285}{24612128} a^{4} + \frac{290792}{2307387} a^{3} - \frac{25064521}{73836384} a^{2} + \frac{35569021}{73836384} a + \frac{1715125}{6153032}$, $\frac{1}{1089982139799637380785465895264} a^{20} + \frac{110564806905067568799}{121109126644404153420607321696} a^{19} - \frac{2246558705324003205209}{1089982139799637380785465895264} a^{18} + \frac{1653396139778961327202897}{1089982139799637380785465895264} a^{17} + \frac{5093269996405043643365}{1401005321079225425174120688} a^{16} + \frac{9118989514384017405174625}{1089982139799637380785465895264} a^{15} - \frac{806217895433599675332236551}{363327379933212460261821965088} a^{14} + \frac{5159472284554922000109488467}{1089982139799637380785465895264} a^{13} - \frac{325204145767148690941337835}{30277281661101038355151830424} a^{12} + \frac{930940172023380842711811013}{272495534949909345196366473816} a^{11} + \frac{30140053527053407353399983461}{272495534949909345196366473816} a^{10} - \frac{20278730572851487868357199557}{272495534949909345196366473816} a^{9} - \frac{3877032340590796496310419995}{272495534949909345196366473816} a^{8} + \frac{84564827469087849721232716405}{363327379933212460261821965088} a^{7} + \frac{223815039758363884855964133943}{1089982139799637380785465895264} a^{6} + \frac{51543819947717462301142965199}{1089982139799637380785465895264} a^{5} - \frac{20711810550409395577545983399}{1089982139799637380785465895264} a^{4} - \frac{34146869251193677533204962477}{90831844983303115065455491272} a^{3} - \frac{83581667285958371289466667489}{181663689966606230130910982544} a^{2} + \frac{3350377740553228649633286037}{60554563322202076710303660848} a - \frac{806404164375139161256229081}{2052697061769561922383174944}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 199665489400000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 21 |
| The 5 conjugacy class representatives for $C_7:C_3$ |
| Character table for $C_7:C_3$ |
Intermediate fields
| 3.3.769129.1, 7.7.591559418641.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.7.591559418641.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{21}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 877 | Data not computed | ||||||