Normalized defining polynomial
\( x^{21} - 10 x^{20} - 379 x^{19} + 1384 x^{18} + 53116 x^{17} - 13301 x^{16} - 3692835 x^{15} - 7668748 x^{14} + 134090640 x^{13} + 563725213 x^{12} - 2138988854 x^{11} - 16970326923 x^{10} - 6183776481 x^{9} + 213379818954 x^{8} + 617909038462 x^{7} - 197740623406 x^{6} - 4673360450941 x^{5} - 11825689657381 x^{4} - 15223070924580 x^{3} - 11060712562675 x^{2} - 4275614935180 x - 675087792901 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(156300411670105474374174516001324669217427251047054050625=5^{4}\cdot 13^{4}\cdot 577^{10}\cdot 2029^{2}\cdot 22803013^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $474.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 577, 2029, 22803013$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{83} a^{19} - \frac{22}{83} a^{18} + \frac{15}{83} a^{17} + \frac{4}{83} a^{16} - \frac{11}{83} a^{15} - \frac{33}{83} a^{14} - \frac{37}{83} a^{13} + \frac{9}{83} a^{12} - \frac{31}{83} a^{11} - \frac{32}{83} a^{10} + \frac{2}{83} a^{9} + \frac{36}{83} a^{8} - \frac{14}{83} a^{7} - \frac{31}{83} a^{6} - \frac{5}{83} a^{5} - \frac{25}{83} a^{4} + \frac{7}{83} a^{3} - \frac{26}{83} a^{2} + \frac{41}{83} a - \frac{26}{83}$, $\frac{1}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985} a^{20} + \frac{69291453545741900902711607207422820049531941284886886260571598598630238694389942036124191501}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985} a^{19} - \frac{170665774160506517852271905540303495482571699993686967475142624247668487694057601778584872188}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985} a^{18} - \frac{4265743289687669709839758431861459805334244961310998681996856431869633528798794411611111666634}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985} a^{17} + \frac{2095416695773527967857151821368617479913256367589145701924951507977298192955752928495174542537}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985} a^{16} + \frac{5161835709830307248828860518147203806305562369594706250542519246206419621017027999093529367141}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985} a^{15} - \frac{1919916545747789164096189629481803770874280152638258465644274044838611773513359991878798581779}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985} a^{14} + \frac{2094243006780582729036944749994953677751190448657689269355730191735792370671116976130449530068}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985} a^{13} + \frac{2740604840711969986202684829145151352783806203724561022894042451355128147122698516397002103248}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985} a^{12} + \frac{603332166087760117927140081879931132732846450452057552961231368596388030397874840586862791096}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985} a^{11} - \frac{5416087114464569406099882999825012968113776252767597538603074318862291236673248642706381731298}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985} a^{10} - \frac{4579765074908547960746744402782010426385049318220216411717413942414101012290662296417567598731}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985} a^{9} + \frac{5465588606836534424499090991410676000633963037539655839774924498040688218079406684591985100213}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985} a^{8} + \frac{4853203055186687895603570697282981344577937556160938569413843603335750502436075889156500691022}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985} a^{7} - \frac{3798486399393304361235538623710607996646177786365387132430495703022535320780426192012729184686}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985} a^{6} + \frac{26067774346189912418905330554222397984448222126066277332080700983114001534789617243169339583}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985} a^{5} + \frac{6042537388590744209028897128277396837488030881407172172648337657079472504796335288918004878332}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985} a^{4} + \frac{1134217792317881165574702905901787144797504852740803745319870742716047147950116678872775376191}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985} a^{3} + \frac{640222109242283818784365013575048201241745538899671492032993976916826410750894627312337594161}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985} a^{2} + \frac{912192736138591205009844347974128492395284313566553352722638223890142443447128952273423171426}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985} a + \frac{6259630522648500951537928033545402339898513606706050902123248330627005886265164942314881957641}{12855022255737971622911468186589693956588671232472876004048422983493287862080419722840960585985}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1193788661860000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 30618 |
| The 207 conjugacy class representatives for t21n75 are not computed |
| Character table for t21n75 is not computed |
Intermediate fields
| 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | R | $21$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.6.4.2 | $x^{6} - 13 x^{3} + 338$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 577 | Data not computed | ||||||
| 2029 | Data not computed | ||||||
| 22803013 | Data not computed | ||||||