Normalized defining polynomial
\( x^{21} - 3 x^{20} - 154 x^{19} + 702 x^{18} + 7675 x^{17} - 48437 x^{16} - 121539 x^{15} + 1311181 x^{14} - 604724 x^{13} - 13780424 x^{12} + 24227654 x^{11} + 53854396 x^{10} - 155785132 x^{9} - 44499970 x^{8} + 349494407 x^{7} - 72022779 x^{6} - 299417524 x^{5} + 81644768 x^{4} + 75064083 x^{3} - 21679907 x^{2} - 4245015 x + 1188557 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1455017556485777831827718837684258199501571708701991598100360439005184=2^{18}\cdot 7^{14}\cdot 11^{6}\cdot 19^{14}\cdot 37^{6}\cdot 1311031^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1965.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11, 19, 37, 1311031$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} - \frac{1}{7} a^{3} - \frac{1}{7} a^{2} - \frac{1}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{8} - \frac{2}{7} a^{6} - \frac{2}{7} a^{5} - \frac{2}{7} a^{4} - \frac{2}{7} a^{3} - \frac{2}{7} a^{2} - \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{9} + \frac{3}{7} a^{6} + \frac{3}{7} a^{5} + \frac{3}{7} a^{4} + \frac{3}{7} a^{3} + \frac{2}{7} a^{2} + \frac{3}{7} a + \frac{3}{7}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a^{2} - \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{7} a^{11} - \frac{2}{7} a^{6} - \frac{2}{7} a^{5} - \frac{3}{7} a^{4} - \frac{2}{7} a^{3} - \frac{2}{7} a^{2} - \frac{2}{7} a - \frac{2}{7}$, $\frac{1}{49} a^{12} - \frac{2}{49} a^{10} + \frac{3}{49} a^{9} + \frac{2}{49} a^{8} + \frac{3}{49} a^{7} - \frac{3}{7} a^{6} + \frac{13}{49} a^{5} - \frac{12}{49} a^{3} + \frac{18}{49} a^{2} + \frac{5}{49} a - \frac{10}{49}$, $\frac{1}{98} a^{13} - \frac{1}{98} a^{12} + \frac{5}{98} a^{11} + \frac{5}{98} a^{10} - \frac{1}{98} a^{9} + \frac{1}{98} a^{8} - \frac{3}{98} a^{7} - \frac{1}{98} a^{6} + \frac{1}{98} a^{5} - \frac{5}{98} a^{4} - \frac{5}{98} a^{3} + \frac{1}{98} a^{2} - \frac{1}{98} a + \frac{3}{98}$, $\frac{1}{98} a^{14} - \frac{2}{49} a^{11} - \frac{1}{49} a^{10} + \frac{1}{49} a^{9} + \frac{2}{49} a^{8} - \frac{1}{49} a^{7} + \frac{2}{7} a^{6} - \frac{1}{7} a^{5} + \frac{23}{49} a^{4} + \frac{1}{49} a^{3} - \frac{22}{49} a^{2} + \frac{5}{49} a - \frac{27}{98}$, $\frac{1}{98} a^{15} - \frac{1}{49} a^{11} - \frac{3}{49} a^{10} + \frac{1}{49} a^{9} + \frac{3}{49} a^{8} - \frac{1}{49} a^{7} + \frac{1}{49} a^{4} + \frac{3}{49} a^{3} - \frac{1}{49} a^{2} - \frac{1}{14} a + \frac{1}{49}$, $\frac{1}{686} a^{16} + \frac{3}{686} a^{15} - \frac{3}{686} a^{14} + \frac{3}{49} a^{11} - \frac{3}{49} a^{10} + \frac{20}{343} a^{9} - \frac{17}{343} a^{8} - \frac{4}{343} a^{7} + \frac{2}{7} a^{6} + \frac{2}{7} a^{5} - \frac{24}{49} a^{4} + \frac{10}{49} a^{3} - \frac{41}{686} a^{2} + \frac{129}{686} a - \frac{283}{686}$, $\frac{1}{4802} a^{17} + \frac{1}{2401} a^{16} - \frac{13}{4802} a^{15} - \frac{11}{4802} a^{14} + \frac{3}{686} a^{13} - \frac{5}{686} a^{12} + \frac{13}{686} a^{11} - \frac{317}{4802} a^{10} - \frac{11}{4802} a^{9} + \frac{229}{4802} a^{8} + \frac{309}{4802} a^{7} + \frac{81}{686} a^{6} + \frac{19}{686} a^{5} + \frac{29}{686} a^{4} - \frac{283}{2401} a^{3} + \frac{9}{4802} a^{2} - \frac{1039}{2401} a + \frac{733}{2401}$, $\frac{1}{4802} a^{18} - \frac{3}{4802} a^{16} + \frac{4}{2401} a^{15} + \frac{1}{4802} a^{14} + \frac{3}{686} a^{13} - \frac{5}{686} a^{12} - \frac{9}{4802} a^{11} + \frac{47}{686} a^{10} + \frac{321}{4802} a^{9} - \frac{331}{4802} a^{8} + \frac{33}{4802} a^{7} - \frac{157}{686} a^{6} + \frac{215}{686} a^{5} - \frac{388}{2401} a^{4} - \frac{89}{686} a^{3} + \frac{282}{2401} a^{2} + \frac{1695}{4802} a - \frac{801}{2401}$, $\frac{1}{3630312} a^{19} - \frac{1}{74088} a^{18} - \frac{373}{3630312} a^{17} - \frac{1579}{3630312} a^{16} - \frac{2725}{605052} a^{15} - \frac{1535}{1815156} a^{14} - \frac{1451}{518616} a^{13} + \frac{12745}{3630312} a^{12} - \frac{23887}{518616} a^{11} - \frac{92207}{3630312} a^{10} - \frac{115891}{3630312} a^{9} + \frac{154801}{3630312} a^{8} - \frac{151675}{3630312} a^{7} - \frac{2371}{518616} a^{6} - \frac{197153}{907578} a^{5} - \frac{30481}{86436} a^{4} + \frac{77600}{453789} a^{3} - \frac{380305}{1815156} a^{2} - \frac{376493}{3630312} a + \frac{1076729}{3630312}$, $\frac{1}{50787722984751075117215155190682273638976} a^{20} - \frac{632890604446550277143317600238831}{12696930746187768779303788797670568409744} a^{19} + \frac{725935200951919846466061571687524011}{8464620497458512519535859198447045606496} a^{18} - \frac{11092302766481733884877528624462925}{384755477157205114524357236293047527568} a^{17} - \frac{26647519587316657935134766768864494513}{50787722984751075117215155190682273638976} a^{16} + \frac{59632333769314484214850363032527217245}{12696930746187768779303788797670568409744} a^{15} - \frac{125496368367603220566982672610610323575}{50787722984751075117215155190682273638976} a^{14} + \frac{1621086981386005274267260690092953075}{384755477157205114524357236293047527568} a^{13} + \frac{7990217372092760438940400597256599493}{1587116343273471097412973599708821051218} a^{12} - \frac{7025893202054735060674619666046592759}{577133215735807671786535854439571291352} a^{11} - \frac{124170634928541530588496242985400696859}{2308532862943230687146143417758285165408} a^{10} - \frac{1759253022678533358407035687778441454785}{25393861492375537558607577595341136819488} a^{9} - \frac{1164198782825660299763139723816661287325}{25393861492375537558607577595341136819488} a^{8} + \frac{22279842527719115375997879449462003509}{705385041454876043294654933203920467208} a^{7} + \frac{11576803804800657616965118429955543806367}{50787722984751075117215155190682273638976} a^{6} + \frac{6398995653161519332598076617015456138767}{25393861492375537558607577595341136819488} a^{5} - \frac{1124108617394463611941319570155939601041}{25393861492375537558607577595341136819488} a^{4} - \frac{2874168836151927957270129552572419266605}{8464620497458512519535859198447045606496} a^{3} - \frac{514724115849281390615482780354700750575}{1539021908628820458097428945172190110272} a^{2} + \frac{3086942597493550171439720769641168185261}{12696930746187768779303788797670568409744} a - \frac{18082522961556834072311921740396725975755}{50787722984751075117215155190682273638976}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54970620008200000000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 24696 |
| The 45 conjugacy class representatives for t21n70 |
| Character table for t21n70 is not computed |
Intermediate fields
| 3.3.361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{7}$ | $21$ | R | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19 | Data not computed | ||||||
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 1311031 | Data not computed | ||||||