Normalized defining polynomial
\( x^{21} - 4 x^{20} - 46 x^{19} + 192 x^{18} + 752 x^{17} - 3392 x^{16} - 5652 x^{15} + 29504 x^{14} + 19392 x^{13} - 138787 x^{12} - 17833 x^{11} + 362514 x^{10} - 59599 x^{9} - 524134 x^{8} + 180953 x^{7} + 401883 x^{6} - 198823 x^{5} - 141878 x^{4} + 97061 x^{3} + 10664 x^{2} - 16800 x + 2843 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(142736986105602839685204351151303673689=7^{14}\cdot 29^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(203=7\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{203}(1,·)$, $\chi_{203}(197,·)$, $\chi_{203}(198,·)$, $\chi_{203}(65,·)$, $\chi_{203}(74,·)$, $\chi_{203}(141,·)$, $\chi_{203}(78,·)$, $\chi_{203}(16,·)$, $\chi_{203}(81,·)$, $\chi_{203}(23,·)$, $\chi_{203}(88,·)$, $\chi_{203}(25,·)$, $\chi_{203}(30,·)$, $\chi_{203}(36,·)$, $\chi_{203}(165,·)$, $\chi_{203}(169,·)$, $\chi_{203}(170,·)$, $\chi_{203}(107,·)$, $\chi_{203}(53,·)$, $\chi_{203}(123,·)$, $\chi_{203}(190,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{17} a^{18} + \frac{5}{17} a^{17} - \frac{3}{17} a^{16} + \frac{6}{17} a^{15} - \frac{1}{17} a^{14} - \frac{8}{17} a^{13} - \frac{3}{17} a^{12} - \frac{6}{17} a^{11} + \frac{1}{17} a^{9} + \frac{2}{17} a^{8} + \frac{5}{17} a^{7} - \frac{3}{17} a^{6} - \frac{2}{17} a^{5} - \frac{4}{17} a^{4} - \frac{7}{17} a^{3} - \frac{3}{17} a^{2} - \frac{8}{17} a - \frac{1}{17}$, $\frac{1}{697} a^{19} - \frac{20}{697} a^{18} - \frac{332}{697} a^{17} - \frac{293}{697} a^{16} - \frac{49}{697} a^{15} + \frac{5}{41} a^{14} + \frac{214}{697} a^{13} + \frac{154}{697} a^{12} - \frac{88}{697} a^{11} + \frac{86}{697} a^{10} + \frac{130}{697} a^{9} + \frac{244}{697} a^{8} + \frac{110}{697} a^{7} - \frac{46}{697} a^{6} - \frac{345}{697} a^{5} - \frac{264}{697} a^{4} + \frac{121}{697} a^{3} + \frac{16}{697} a^{2} - \frac{260}{697} a + \frac{331}{697}$, $\frac{1}{94681350923027856166972143748841} a^{20} + \frac{26893875581492066769715027169}{94681350923027856166972143748841} a^{19} + \frac{973746948699479043246103055526}{94681350923027856166972143748841} a^{18} + \frac{31313757912839943211074043291513}{94681350923027856166972143748841} a^{17} - \frac{10295245055016461279992786512442}{94681350923027856166972143748841} a^{16} - \frac{30644002701270934383486487138270}{94681350923027856166972143748841} a^{15} + \frac{421402792740371757653653067699}{2309301242025069662609076676801} a^{14} + \frac{40103743480146765987051837486268}{94681350923027856166972143748841} a^{13} - \frac{14616209773148586652243710363536}{94681350923027856166972143748841} a^{12} + \frac{43869311495837625156551496077736}{94681350923027856166972143748841} a^{11} - \frac{22227426304848921818124577625217}{94681350923027856166972143748841} a^{10} - \frac{14611160237634753382110627388151}{94681350923027856166972143748841} a^{9} - \frac{40947155305647503019542413186887}{94681350923027856166972143748841} a^{8} - \frac{17742929640627350574440022836395}{94681350923027856166972143748841} a^{7} - \frac{22916316161008780830154156552080}{94681350923027856166972143748841} a^{6} - \frac{36170850360752235352617873740474}{94681350923027856166972143748841} a^{5} + \frac{33318582483221936265509382788098}{94681350923027856166972143748841} a^{4} - \frac{619995942956309404930601310542}{94681350923027856166972143748841} a^{3} - \frac{4179560882355591846095379937990}{94681350923027856166972143748841} a^{2} - \frac{17572846455567989954960618687350}{94681350923027856166972143748841} a - \frac{16294892671649717002326733849869}{94681350923027856166972143748841}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2231765965710 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | $21$ | R | $21$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | $21$ | $21$ | R | $21$ | $21$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{21}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |