Normalized defining polynomial
\( x^{21} - 4 x^{20} - 100 x^{19} + 456 x^{18} + 3776 x^{17} - 20240 x^{16} - 65058 x^{15} + 451646 x^{14} + 423688 x^{13} - 5452225 x^{12} + 1655193 x^{11} + 35371490 x^{10} - 39386623 x^{9} - 111354014 x^{8} + 208156183 x^{7} + 105332901 x^{6} - 422345627 x^{5} + 144428798 x^{4} + 234723315 x^{3} - 152780306 x^{2} - 25641148 x + 26494201 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1425682560385717640661443870033677687676469889=7^{14}\cdot 71^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $141.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(497=7\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{497}(1,·)$, $\chi_{497}(387,·)$, $\chi_{497}(261,·)$, $\chi_{497}(72,·)$, $\chi_{497}(463,·)$, $\chi_{497}(400,·)$, $\chi_{497}(403,·)$, $\chi_{497}(214,·)$, $\chi_{497}(471,·)$, $\chi_{497}(30,·)$, $\chi_{497}(32,·)$, $\chi_{497}(162,·)$, $\chi_{497}(37,·)$, $\chi_{497}(233,·)$, $\chi_{497}(172,·)$, $\chi_{497}(456,·)$, $\chi_{497}(179,·)$, $\chi_{497}(116,·)$, $\chi_{497}(375,·)$, $\chi_{497}(316,·)$, $\chi_{497}(190,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{15} + \frac{2}{5} a^{11} - \frac{2}{5} a^{7} - \frac{2}{5} a^{5} - \frac{1}{5} a^{3} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{17} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{425} a^{18} + \frac{1}{17} a^{17} + \frac{7}{425} a^{16} - \frac{2}{425} a^{15} - \frac{38}{425} a^{14} + \frac{32}{425} a^{13} - \frac{14}{425} a^{12} + \frac{42}{425} a^{11} + \frac{196}{425} a^{10} - \frac{183}{425} a^{9} + \frac{161}{425} a^{8} + \frac{197}{425} a^{7} - \frac{4}{85} a^{6} + \frac{149}{425} a^{5} - \frac{4}{25} a^{4} + \frac{27}{425} a^{3} - \frac{189}{425} a^{2} - \frac{56}{425} a - \frac{44}{425}$, $\frac{1}{425} a^{19} - \frac{23}{425} a^{17} - \frac{7}{425} a^{16} + \frac{12}{425} a^{15} - \frac{38}{425} a^{14} + \frac{36}{425} a^{13} - \frac{33}{425} a^{12} - \frac{4}{425} a^{11} + \frac{11}{25} a^{10} - \frac{109}{425} a^{9} - \frac{3}{425} a^{8} - \frac{4}{17} a^{7} - \frac{31}{425} a^{6} + \frac{117}{425} a^{5} - \frac{143}{425} a^{4} - \frac{184}{425} a^{3} - \frac{176}{425} a^{2} - \frac{4}{425} a + \frac{16}{85}$, $\frac{1}{3532348843617354033785016708068067561719742197419411515475} a^{20} + \frac{1179859478307529327121870776183397240382950194332722193}{3532348843617354033785016708068067561719742197419411515475} a^{19} - \frac{1705977274483583093491083822118212087425170668419919703}{3532348843617354033785016708068067561719742197419411515475} a^{18} - \frac{286597568495014696032175007863608530325402605746670187566}{3532348843617354033785016708068067561719742197419411515475} a^{17} + \frac{233198143887530132030571022524916406614761711212683061731}{3532348843617354033785016708068067561719742197419411515475} a^{16} + \frac{312532044530795775198507070612083308135173369477929168778}{3532348843617354033785016708068067561719742197419411515475} a^{15} - \frac{216347727581218140703399030883588814997360154470797540023}{3532348843617354033785016708068067561719742197419411515475} a^{14} + \frac{53714423692762660403017934261506653274564634891070312066}{706469768723470806757003341613613512343948439483882303095} a^{13} - \frac{282530370625916768340715327482547771846261005208708584043}{3532348843617354033785016708068067561719742197419411515475} a^{12} + \frac{138488177139040877938287138215113622425494471707739622461}{706469768723470806757003341613613512343948439483882303095} a^{11} - \frac{22603145137021554160113504561683454897237089372596441573}{3532348843617354033785016708068067561719742197419411515475} a^{10} + \frac{272791200029472847143898494376908450230725570136886970208}{706469768723470806757003341613613512343948439483882303095} a^{9} - \frac{3851836111787036852733771666752459300187913161344230152}{207785226095138472575589218121651033042337776318788912675} a^{8} - \frac{1339135118874386040805752810639271900341430235504608630771}{3532348843617354033785016708068067561719742197419411515475} a^{7} + \frac{1070546458464488701905563316103739059529045843382739122609}{3532348843617354033785016708068067561719742197419411515475} a^{6} - \frac{1130391097356404673245923234814747561065710018796242774982}{3532348843617354033785016708068067561719742197419411515475} a^{5} - \frac{1334948618063218142001240811096052347490779389502687190403}{3532348843617354033785016708068067561719742197419411515475} a^{4} + \frac{1178214087787939714369012976256351139904120683237015842992}{3532348843617354033785016708068067561719742197419411515475} a^{3} - \frac{342005625775923086361583121011219256153067407972294867547}{3532348843617354033785016708068067561719742197419411515475} a^{2} + \frac{551456118648812161739235617920827293348689086546870747828}{3532348843617354033785016708068067561719742197419411515475} a - \frac{100655764083920782802416485211836355382255010938050365201}{706469768723470806757003341613613512343948439483882303095}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4244799371179891.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.7.128100283921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{7}$ | R | $21$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | $21$ | $21$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | $21$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $71$ | 71.7.6.1 | $x^{7} - 71$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 71.7.6.1 | $x^{7} - 71$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 71.7.6.1 | $x^{7} - 71$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |