Normalized defining polynomial
\( x^{21} - 3 x^{20} - 154 x^{19} + 702 x^{18} + 7773 x^{17} - 49095 x^{16} - 125375 x^{15} + 1341897 x^{14} - 549949 x^{13} - 14368893 x^{12} + 23839329 x^{11} + 61218585 x^{10} - 162697023 x^{9} - 75688995 x^{8} + 413867107 x^{7} - 75283085 x^{6} - 379809836 x^{5} + 146533704 x^{4} + 64989214 x^{3} - 28197376 x^{2} - 1291883 x + 851171 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1411787678306418347597299085327799505357680312763424671062556672=2^{18}\cdot 7^{15}\cdot 67^{7}\cdot 239^{3}\cdot 239339207^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1016.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 67, 239, 239339207$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} - \frac{1}{7} a^{3} - \frac{1}{7} a^{2} - \frac{1}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{8} - \frac{2}{7} a^{6} - \frac{2}{7} a^{5} - \frac{2}{7} a^{4} - \frac{2}{7} a^{3} - \frac{2}{7} a^{2} - \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{9} + \frac{3}{7} a^{6} + \frac{3}{7} a^{5} + \frac{3}{7} a^{4} + \frac{3}{7} a^{3} + \frac{2}{7} a^{2} + \frac{3}{7} a + \frac{3}{7}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a^{2} - \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{49} a^{11} + \frac{1}{49} a^{10} - \frac{1}{49} a^{9} + \frac{2}{49} a^{8} - \frac{3}{49} a^{7} + \frac{2}{7} a^{6} - \frac{1}{7} a^{5} + \frac{20}{49} a^{4} - \frac{15}{49} a^{3} + \frac{22}{49} a^{2} + \frac{12}{49} a + \frac{3}{49}$, $\frac{1}{49} a^{12} - \frac{2}{49} a^{10} + \frac{3}{49} a^{9} + \frac{2}{49} a^{8} + \frac{3}{49} a^{7} - \frac{3}{7} a^{6} - \frac{22}{49} a^{5} + \frac{2}{7} a^{4} - \frac{12}{49} a^{3} - \frac{10}{49} a^{2} - \frac{16}{49} a + \frac{11}{49}$, $\frac{1}{147} a^{13} - \frac{1}{147} a^{12} - \frac{1}{21} a^{10} - \frac{10}{147} a^{9} - \frac{3}{49} a^{8} - \frac{3}{49} a^{7} + \frac{9}{49} a^{6} - \frac{9}{49} a^{5} + \frac{2}{21} a^{4} + \frac{5}{21} a^{3} + \frac{15}{49} a^{2} + \frac{65}{147} a + \frac{23}{147}$, $\frac{1}{147} a^{14} - \frac{1}{147} a^{12} - \frac{1}{147} a^{11} + \frac{10}{147} a^{10} - \frac{4}{147} a^{9} - \frac{2}{49} a^{8} - \frac{1}{7} a^{6} - \frac{13}{147} a^{5} + \frac{64}{147} a^{4} + \frac{11}{147} a^{3} - \frac{31}{147} a^{2} + \frac{55}{147} a - \frac{64}{147}$, $\frac{1}{147} a^{15} + \frac{1}{147} a^{12} + \frac{1}{147} a^{11} - \frac{5}{147} a^{10} + \frac{2}{147} a^{9} + \frac{2}{49} a^{7} + \frac{8}{21} a^{6} - \frac{29}{147} a^{5} - \frac{29}{147} a^{4} + \frac{19}{147} a^{3} - \frac{44}{147} a^{2} + \frac{55}{147} a - \frac{34}{147}$, $\frac{1}{6174} a^{16} + \frac{5}{3087} a^{15} - \frac{1}{2058} a^{14} - \frac{1}{882} a^{13} + \frac{1}{882} a^{12} - \frac{2}{441} a^{11} + \frac{13}{441} a^{10} - \frac{148}{3087} a^{9} + \frac{9}{343} a^{8} + \frac{178}{3087} a^{7} - \frac{45}{98} a^{6} + \frac{73}{441} a^{5} + \frac{149}{441} a^{4} - \frac{425}{882} a^{3} + \frac{1054}{3087} a^{2} - \frac{2377}{6174} a - \frac{1529}{6174}$, $\frac{1}{6174} a^{17} - \frac{19}{6174} a^{15} - \frac{19}{6174} a^{14} - \frac{1}{882} a^{13} - \frac{1}{441} a^{12} - \frac{1}{147} a^{11} - \frac{50}{3087} a^{10} + \frac{10}{441} a^{9} - \frac{2}{3087} a^{8} - \frac{95}{6174} a^{7} - \frac{185}{441} a^{6} + \frac{85}{441} a^{5} + \frac{23}{294} a^{4} - \frac{1543}{3087} a^{3} + \frac{47}{294} a^{2} + \frac{1199}{6174} a + \frac{988}{3087}$, $\frac{1}{43218} a^{18} - \frac{1}{14406} a^{16} + \frac{19}{14406} a^{15} - \frac{97}{43218} a^{14} + \frac{20}{3087} a^{12} - \frac{43}{21609} a^{11} - \frac{115}{3087} a^{10} + \frac{428}{7203} a^{9} - \frac{1913}{43218} a^{8} + \frac{104}{21609} a^{7} + \frac{184}{441} a^{6} - \frac{2623}{6174} a^{5} + \frac{9034}{21609} a^{4} - \frac{1121}{6174} a^{3} - \frac{8837}{43218} a^{2} + \frac{1565}{21609} a + \frac{5408}{21609}$, $\frac{1}{2593080} a^{19} + \frac{11}{2593080} a^{18} + \frac{11}{2593080} a^{17} + \frac{17}{2593080} a^{16} + \frac{649}{324135} a^{15} - \frac{389}{129654} a^{14} + \frac{139}{41160} a^{13} + \frac{1667}{518616} a^{12} - \frac{2794}{324135} a^{11} + \frac{13943}{324135} a^{10} + \frac{112393}{2593080} a^{9} - \frac{85529}{2593080} a^{8} + \frac{7367}{1296540} a^{7} + \frac{1373}{185220} a^{6} + \frac{1248269}{2593080} a^{5} + \frac{286843}{2593080} a^{4} - \frac{65431}{518616} a^{3} + \frac{1070107}{2593080} a^{2} - \frac{1231393}{2593080} a - \frac{1052761}{2593080}$, $\frac{1}{241241207877226634018550926300017457371200} a^{20} - \frac{10212218407335007919286078143372489}{60310301969306658504637731575004364342800} a^{19} + \frac{123789958652043289669745752487604119}{40206867979537772336425154383336242895200} a^{18} - \frac{23831110791562749618020431574450227}{574383828279111033377502205476232041360} a^{17} + \frac{667815928930333699367459691696256459}{8934859551008393852538923196296942865600} a^{16} - \frac{4444785260286787523583632566457051671}{1675286165814073847351048099305676787300} a^{15} - \frac{312242505681714319771819758796312397903}{241241207877226634018550926300017457371200} a^{14} + \frac{12701633742921567545180476266845055407}{30155150984653329252318865787502182171400} a^{13} - \frac{326664213014433079432406797987087416839}{80413735959075544672850308766672485790400} a^{12} - \frac{65306086581558183645907970048087895083}{10051716994884443084106288595834060723800} a^{11} - \frac{43472145184829184018520680942558458773}{765845104372148044503336273968309388480} a^{10} - \frac{7387359421151135123048848985704564699}{335057233162814769470209619861135357460} a^{9} + \frac{480365071369236049853348042154888324713}{26804578653025181557616769588890828596800} a^{8} - \frac{431812326919298175854939888537099448583}{20103433989768886168212577191668121447600} a^{7} + \frac{9566437530582998387027465611341528405419}{48248241575445326803710185260003491474240} a^{6} - \frac{242603301345427189018774013248972301261}{12062060393861331700927546315000872868560} a^{5} - \frac{2798518381606243172703427967052431867699}{10051716994884443084106288595834060723800} a^{4} - \frac{355591786622897060181896427415908184613}{717979785348888791721877756845290051700} a^{3} - \frac{4444577912099217217492527450377415700441}{120620603938613317009275463150008728685600} a^{2} + \frac{2320695187815248900866100684096377915319}{8041373595907554467285030876667248579040} a + \frac{11731845244821197378758242194085850170307}{241241207877226634018550926300017457371200}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 72248766090300000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 49392 |
| The 51 conjugacy class representatives for t21n87 are not computed |
| Character table for t21n87 is not computed |
Intermediate fields
| 3.3.469.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | $21$ | $21$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.12.12.24 | $x^{12} - 100 x^{10} - 59 x^{8} + 104 x^{6} + 387 x^{4} + 444 x^{2} + 439$ | $2$ | $6$ | $12$ | $D_4 \times C_3$ | $[2, 2]^{6}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $67$ | $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.6.3.2 | $x^{6} - 4489 x^{2} + 4812208$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 67.6.3.2 | $x^{6} - 4489 x^{2} + 4812208$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 67.6.0.1 | $x^{6} + x^{2} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 239 | Data not computed | ||||||
| 239339207 | Data not computed | ||||||