Normalized defining polynomial
\( x^{21} - 105 x^{19} + 4725 x^{17} - 119000 x^{15} - 690 x^{14} + 1837500 x^{13} + 48300 x^{12} - 17915625 x^{11} - 1328250 x^{10} + 109484375 x^{9} + 18112500 x^{8} - 401820025 x^{7} - 126787500 x^{6} + 799247750 x^{5} + 422625000 x^{4} - 623336875 x^{3} - 528281250 x^{2} - 116462500 x - 5255000 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13574094679628706568106985454336000000000000000000=2^{26}\cdot 5^{18}\cdot 7^{21}\cdot 37^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $218.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{80} a^{7} + \frac{1}{16} a^{5} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{7}{16} a + \frac{1}{8}$, $\frac{1}{80} a^{8} + \frac{1}{16} a^{6} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{7}{16} a^{2} + \frac{1}{8} a$, $\frac{1}{80} a^{9} + \frac{1}{16} a^{5} + \frac{3}{16} a^{3} + \frac{1}{8} a^{2} + \frac{3}{16} a + \frac{3}{8}$, $\frac{1}{80} a^{10} + \frac{1}{16} a^{6} + \frac{3}{16} a^{4} + \frac{1}{8} a^{3} + \frac{3}{16} a^{2} + \frac{3}{8} a$, $\frac{1}{160} a^{11} - \frac{1}{160} a^{10} - \frac{1}{160} a^{9} - \frac{1}{32} a^{6} + \frac{5}{32} a^{5} - \frac{1}{32} a^{4} - \frac{1}{2} a^{3} + \frac{1}{32} a^{2} - \frac{7}{16} a - \frac{1}{2}$, $\frac{1}{160} a^{12} - \frac{1}{160} a^{9} - \frac{1}{160} a^{7} + \frac{3}{16} a^{6} - \frac{1}{4} a^{5} + \frac{5}{32} a^{4} + \frac{13}{32} a^{3} + \frac{9}{32} a^{2} - \frac{7}{16} a - \frac{1}{4}$, $\frac{1}{160} a^{13} - \frac{1}{160} a^{10} - \frac{1}{160} a^{8} - \frac{1}{4} a^{6} + \frac{7}{32} a^{5} - \frac{3}{32} a^{4} - \frac{11}{32} a^{3} + \frac{1}{16} a^{2} - \frac{3}{16} a + \frac{1}{8}$, $\frac{1}{6400} a^{14} + \frac{1}{640} a^{12} + \frac{1}{1280} a^{10} - \frac{1}{640} a^{8} + \frac{1}{320} a^{7} + \frac{11}{128} a^{6} + \frac{1}{64} a^{5} + \frac{7}{64} a^{4} + \frac{15}{32} a^{3} + \frac{81}{256} a^{2} - \frac{23}{64} a + \frac{1}{64}$, $\frac{1}{6400} a^{15} + \frac{1}{640} a^{13} + \frac{1}{1280} a^{11} - \frac{1}{640} a^{9} + \frac{1}{320} a^{8} - \frac{1}{640} a^{7} + \frac{1}{64} a^{6} + \frac{11}{64} a^{5} - \frac{1}{32} a^{4} + \frac{49}{256} a^{3} - \frac{23}{64} a^{2} + \frac{5}{64} a + \frac{1}{8}$, $\frac{1}{6400} a^{16} - \frac{3}{1280} a^{12} + \frac{1}{320} a^{10} + \frac{1}{320} a^{9} + \frac{1}{640} a^{8} - \frac{1}{320} a^{7} + \frac{3}{16} a^{6} + \frac{57}{256} a^{4} + \frac{21}{64} a^{3} + \frac{29}{128} a^{2} - \frac{3}{32} a - \frac{1}{32}$, $\frac{1}{6400} a^{17} - \frac{3}{1280} a^{13} - \frac{1}{320} a^{11} - \frac{1}{320} a^{10} - \frac{3}{640} a^{9} - \frac{1}{320} a^{8} - \frac{1}{32} a^{6} + \frac{17}{256} a^{5} + \frac{11}{64} a^{4} + \frac{37}{128} a^{3} + \frac{1}{16} a^{2} + \frac{13}{32} a + \frac{1}{4}$, $\frac{1}{368512000} a^{18} + \frac{2903}{73702400} a^{17} - \frac{9}{36851200} a^{16} - \frac{4919}{73702400} a^{15} + \frac{27}{2948096} a^{14} - \frac{23}{2948096} a^{13} - \frac{273}{1474048} a^{12} + \frac{9597}{73702400} a^{11} + \frac{8649}{3685120} a^{10} + \frac{1491}{921280} a^{9} + \frac{8847}{1842560} a^{8} - \frac{16657}{7370240} a^{7} - \frac{462547}{2948096} a^{6} - \frac{717801}{2948096} a^{5} - \frac{533969}{3685120} a^{4} + \frac{661423}{2948096} a^{3} + \frac{731011}{1474048} a^{2} - \frac{99139}{737024} a + \frac{29477}{368512}$, $\frac{1}{368512000} a^{19} - \frac{19}{73702400} a^{17} + \frac{2999}{73702400} a^{16} + \frac{19}{1842560} a^{15} + \frac{479}{18425600} a^{14} - \frac{665}{2948096} a^{13} + \frac{64147}{73702400} a^{12} + \frac{8645}{2948096} a^{11} + \frac{5141}{1842560} a^{10} + \frac{5441}{921280} a^{9} + \frac{43767}{7370240} a^{8} - \frac{82761}{14740480} a^{7} + \frac{91107}{368512} a^{6} - \frac{3406041}{14740480} a^{5} + \frac{181059}{2948096} a^{4} + \frac{1174513}{2948096} a^{3} + \frac{244019}{1474048} a^{2} - \frac{334817}{737024} a + \frac{116211}{368512}$, $\frac{1}{368512000} a^{20} + \frac{3}{92128} a^{17} - \frac{19}{1474048} a^{16} - \frac{4749}{73702400} a^{15} + \frac{359}{18425600} a^{14} + \frac{4761}{36851200} a^{13} - \frac{31869}{14740480} a^{12} + \frac{7843}{2948096} a^{11} + \frac{2751}{3685120} a^{10} - \frac{20737}{7370240} a^{9} + \frac{7743}{14740480} a^{8} + \frac{1881}{1474048} a^{7} + \frac{1759507}{7370240} a^{6} + \frac{18139}{737024} a^{5} - \frac{436987}{2948096} a^{4} + \frac{1136823}{2948096} a^{3} + \frac{25891}{1474048} a^{2} - \frac{249367}{737024} a + \frac{59507}{368512}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2081293733350000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1764 |
| The 25 conjugacy class representatives for t21n29 |
| Character table for t21n29 is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 21 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.7.6.1 | $x^{7} - 5$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 5.14.12.1 | $x^{14} - 5 x^{7} + 50$ | $7$ | $2$ | $12$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| 7 | Data not computed | ||||||
| 37 | Data not computed | ||||||