Normalized defining polynomial
\( x^{21} - 3 x^{20} - 112 x^{19} + 534 x^{18} + 3748 x^{17} - 27416 x^{16} - 14628 x^{15} + 484726 x^{14} - 943874 x^{13} - 1915634 x^{12} + 8184116 x^{11} - 3181310 x^{10} - 20222740 x^{9} + 25975820 x^{8} + 9469379 x^{7} - 34903053 x^{6} + 15488942 x^{5} + 8410376 x^{4} - 9898284 x^{3} + 3544684 x^{2} - 562728 x + 33368 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13519355382235439206682551551249436467623411507789824=2^{18}\cdot 7^{17}\cdot 43^{3}\cdot 127^{3}\cdot 449^{3}\cdot 24683^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $303.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 43, 127, 449, 24683$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} - \frac{1}{7} a^{3} - \frac{1}{7} a^{2} - \frac{1}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{8} - \frac{2}{7} a^{6} - \frac{2}{7} a^{5} - \frac{2}{7} a^{4} - \frac{2}{7} a^{3} - \frac{2}{7} a^{2} - \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{9} + \frac{3}{7} a^{6} + \frac{3}{7} a^{5} + \frac{3}{7} a^{4} + \frac{3}{7} a^{3} + \frac{2}{7} a^{2} + \frac{3}{7} a + \frac{3}{7}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a^{2} - \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{7} a^{11} - \frac{2}{7} a^{6} - \frac{2}{7} a^{5} - \frac{3}{7} a^{4} - \frac{2}{7} a^{3} - \frac{2}{7} a^{2} - \frac{2}{7} a - \frac{2}{7}$, $\frac{1}{49} a^{12} - \frac{2}{49} a^{10} + \frac{3}{49} a^{9} + \frac{2}{49} a^{8} + \frac{3}{49} a^{7} - \frac{3}{7} a^{6} - \frac{22}{49} a^{5} + \frac{2}{7} a^{4} - \frac{12}{49} a^{3} - \frac{10}{49} a^{2} - \frac{16}{49} a + \frac{11}{49}$, $\frac{1}{49} a^{13} - \frac{2}{49} a^{11} + \frac{3}{49} a^{10} + \frac{2}{49} a^{9} + \frac{3}{49} a^{8} + \frac{6}{49} a^{6} - \frac{1}{7} a^{5} + \frac{16}{49} a^{4} + \frac{18}{49} a^{3} + \frac{12}{49} a^{2} - \frac{10}{49} a + \frac{1}{7}$, $\frac{1}{49} a^{14} + \frac{3}{49} a^{11} - \frac{2}{49} a^{10} + \frac{2}{49} a^{9} - \frac{3}{49} a^{8} - \frac{2}{49} a^{7} + \frac{1}{7} a^{6} - \frac{3}{7} a^{5} + \frac{4}{49} a^{4} - \frac{5}{49} a^{3} - \frac{16}{49} a^{2} - \frac{11}{49} a - \frac{6}{49}$, $\frac{1}{98} a^{15} - \frac{1}{98} a^{14} - \frac{1}{98} a^{13} - \frac{1}{98} a^{12} - \frac{3}{98} a^{11} - \frac{5}{98} a^{10} - \frac{5}{98} a^{9} - \frac{3}{98} a^{8} - \frac{3}{98} a^{7} + \frac{43}{98} a^{6} + \frac{15}{98} a^{5} - \frac{39}{98} a^{4} - \frac{23}{98} a^{3} - \frac{37}{98} a^{2} + \frac{8}{49} a + \frac{23}{49}$, $\frac{1}{98} a^{16} - \frac{3}{49} a^{11} - \frac{1}{49} a^{10} - \frac{1}{49} a^{9} + \frac{1}{49} a^{8} + \frac{3}{49} a^{7} - \frac{1}{7} a^{6} + \frac{1}{7} a^{5} + \frac{10}{49} a^{4} - \frac{6}{49} a^{3} + \frac{29}{98} a^{2} + \frac{20}{49} a + \frac{11}{49}$, $\frac{1}{1372} a^{17} + \frac{1}{1372} a^{16} + \frac{5}{1372} a^{15} + \frac{13}{1372} a^{14} - \frac{1}{196} a^{13} - \frac{1}{196} a^{12} + \frac{11}{196} a^{11} - \frac{65}{1372} a^{10} + \frac{19}{1372} a^{9} + \frac{81}{1372} a^{8} - \frac{89}{1372} a^{7} - \frac{83}{196} a^{6} - \frac{27}{196} a^{5} + \frac{17}{196} a^{4} - \frac{115}{686} a^{3} + \frac{333}{686} a^{2} + \frac{101}{343} a + \frac{117}{343}$, $\frac{1}{1372} a^{18} + \frac{1}{343} a^{16} - \frac{3}{686} a^{15} - \frac{3}{686} a^{14} - \frac{1}{98} a^{13} - \frac{1}{98} a^{12} - \frac{11}{343} a^{11} - \frac{1}{14} a^{10} - \frac{16}{343} a^{9} - \frac{11}{343} a^{8} - \frac{1}{686} a^{7} + \frac{1}{98} a^{6} - \frac{41}{98} a^{5} + \frac{337}{1372} a^{4} + \frac{5}{14} a^{3} + \frac{64}{343} a^{2} - \frac{110}{343} a + \frac{51}{343}$, $\frac{1}{74088} a^{19} + \frac{5}{74088} a^{18} - \frac{1}{10584} a^{17} + \frac{101}{74088} a^{16} + \frac{5}{3528} a^{15} - \frac{355}{74088} a^{14} + \frac{1}{1512} a^{13} - \frac{737}{74088} a^{12} + \frac{3707}{74088} a^{11} - \frac{545}{10584} a^{10} - \frac{937}{74088} a^{9} - \frac{263}{10584} a^{8} - \frac{4309}{74088} a^{7} - \frac{565}{1512} a^{6} - \frac{955}{37044} a^{5} - \frac{1747}{4116} a^{4} - \frac{11}{54} a^{3} - \frac{5573}{18522} a^{2} + \frac{17}{1323} a + \frac{583}{9261}$, $\frac{1}{11687869933072140657752365990427712} a^{20} - \frac{12361056301422525497103158879}{2921967483268035164438091497606928} a^{19} + \frac{11526831513422409817494744889}{108221017898816117201410796207664} a^{18} - \frac{69538760887077652421116506889}{1947978322178690109625394331737952} a^{17} - \frac{577596126418847663710083421771}{5843934966536070328876182995213856} a^{16} + \frac{28777259676788892142074593406823}{5843934966536070328876182995213856} a^{15} - \frac{58947877874558749387785641900225}{5843934966536070328876182995213856} a^{14} - \frac{1877277893628068158651192103737}{486994580544672527406348582934488} a^{13} - \frac{17445311415536246016805440957301}{5843934966536070328876182995213856} a^{12} - \frac{48450370409588316215003016445331}{1460983741634017582219045748803464} a^{11} + \frac{205543452559712815941262585000147}{2921967483268035164438091497606928} a^{10} - \frac{116866589101989865807790252933717}{5843934966536070328876182995213856} a^{9} - \frac{60575699938707802191506736280093}{5843934966536070328876182995213856} a^{8} - \frac{13530275235310336423541156860799}{216442035797632234402821592415328} a^{7} - \frac{124591714372135322061398339005699}{11687869933072140657752365990427712} a^{6} + \frac{2659444427271085394663400739021327}{5843934966536070328876182995213856} a^{5} + \frac{86717729913521006703662402585933}{365245935408504395554761437200866} a^{4} + \frac{37136551077606950005185615524227}{486994580544672527406348582934488} a^{3} - \frac{94605699954710313503911517238095}{973989161089345054812697165868976} a^{2} + \frac{52073860199820896414161526944519}{182622967704252197777380718600433} a + \frac{531187358270029839232948656693971}{1460983741634017582219045748803464}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 101170607775000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8232 |
| The 55 conjugacy class representatives for t21n45 are not computed |
| Character table for t21n45 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{7}$ | R | $21$ | ${\href{/LocalNumberField/13.7.0.1}{7} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $21$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $43$ | $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.7.0.1 | $x^{7} - 2 x + 9$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 127 | Data not computed | ||||||
| 449 | Data not computed | ||||||
| 24683 | Data not computed | ||||||