Normalized defining polynomial
\( x^{21} - 5 x^{20} - 265 x^{19} + 1555 x^{18} + 24365 x^{17} - 142415 x^{16} - 1160659 x^{15} + 5759657 x^{14} + 34517526 x^{13} - 107510372 x^{12} - 681711036 x^{11} + 562272508 x^{10} + 7792955660 x^{9} + 9620586940 x^{8} - 28127643776 x^{7} - 109840831184 x^{6} - 170642722128 x^{5} - 153011174128 x^{4} - 85001700940 x^{3} - 28954196124 x^{2} - 5556466324 x - 460979348 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(131838233533906484946116293526969358649623533128972125601792=2^{24}\cdot 73^{15}\cdot 193^{2}\cdot 4866110647^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $653.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 73, 193, 4866110647$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9}$, $\frac{1}{844} a^{18} + \frac{195}{844} a^{17} + \frac{27}{844} a^{16} - \frac{141}{844} a^{15} + \frac{3}{844} a^{14} - \frac{31}{844} a^{13} - \frac{185}{844} a^{12} + \frac{11}{844} a^{11} - \frac{66}{211} a^{10} + \frac{31}{422} a^{9} - \frac{81}{211} a^{8} - \frac{21}{422} a^{7} + \frac{79}{211} a^{6} - \frac{57}{422} a^{5} - \frac{201}{422} a^{4} + \frac{56}{211} a^{3} - \frac{96}{211} a^{2} + \frac{59}{211} a - \frac{78}{211}$, $\frac{1}{844} a^{19} - \frac{9}{422} a^{17} + \frac{20}{211} a^{16} + \frac{17}{211} a^{15} - \frac{97}{422} a^{14} - \frac{12}{211} a^{13} - \frac{103}{422} a^{12} + \frac{123}{844} a^{11} - \frac{91}{211} a^{10} + \frac{123}{422} a^{9} + \frac{65}{211} a^{8} - \frac{89}{211} a^{7} - \frac{61}{422} a^{6} - \frac{29}{211} a^{5} + \frac{61}{422} a^{4} - \frac{44}{211} a^{3} + \frac{22}{211} a + \frac{18}{211}$, $\frac{1}{293420102075858564536851084689094790811231479944851617061908} a^{20} - \frac{6910753592253957180674716986618292543054588677297528281}{293420102075858564536851084689094790811231479944851617061908} a^{19} + \frac{64845616650312494418766323080821700811711956550489482211}{146710051037929282268425542344547395405615739972425808530954} a^{18} + \frac{12955073479606650733196400672104615076436909790368231524287}{73355025518964641134212771172273697702807869986212904265477} a^{17} + \frac{13552011371929492657730914519063329922307494265348985071696}{73355025518964641134212771172273697702807869986212904265477} a^{16} - \frac{32501762456898105317081904267611552244524989558383154560265}{146710051037929282268425542344547395405615739972425808530954} a^{15} - \frac{1327110809511417233719125737095861965840186728062266999504}{73355025518964641134212771172273697702807869986212904265477} a^{14} + \frac{29181740914813873057134690935397912496437556517215421054241}{146710051037929282268425542344547395405615739972425808530954} a^{13} - \frac{46287354289842499312426490235785826600968196320367563065151}{293420102075858564536851084689094790811231479944851617061908} a^{12} - \frac{55783107861236061185609833012983805494514574502466786752919}{293420102075858564536851084689094790811231479944851617061908} a^{11} + \frac{25943281985916238055126351935646685251104545294016688175755}{73355025518964641134212771172273697702807869986212904265477} a^{10} - \frac{1778562975398895643153898453286644173608318150161604581177}{73355025518964641134212771172273697702807869986212904265477} a^{9} - \frac{16340423739914734957893088106034317281122048672862042446041}{73355025518964641134212771172273697702807869986212904265477} a^{8} - \frac{55618730228640654714930612246512208212271952096809119132055}{146710051037929282268425542344547395405615739972425808530954} a^{7} - \frac{57303588885334894976748738713036079426228143340800539554283}{146710051037929282268425542344547395405615739972425808530954} a^{6} - \frac{9606893373706943532456121140198431537016518354249085930195}{146710051037929282268425542344547395405615739972425808530954} a^{5} + \frac{39338420270083601372649967376312149532647597107854711038821}{146710051037929282268425542344547395405615739972425808530954} a^{4} + \frac{26747399485329324833984948383347930394665269048538247780745}{73355025518964641134212771172273697702807869986212904265477} a^{3} - \frac{23202012023298160997416282344242235126330311351556265591057}{73355025518964641134212771172273697702807869986212904265477} a^{2} - \frac{26182116959920919816679428927460982946746606138276359859487}{73355025518964641134212771172273697702807869986212904265477} a - \frac{32922857762620928147192588586434626362432600218109001756604}{73355025518964641134212771172273697702807869986212904265477}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 118128384628000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 734832 |
| The 72 conjugacy class representatives for t21n117 are not computed |
| Character table for t21n117 is not computed |
Intermediate fields
| 7.7.1817487424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.18.1 | $x^{14} + 2 x^{13} + 2 x^{10} + 2 x^{8} + 2 x^{7} + 2 x^{5} + 2 x^{4} + 2$ | $14$ | $1$ | $18$ | 14T11 | $[12/7, 12/7, 12/7]_{7}^{3}$ | |
| 73 | Data not computed | ||||||
| $193$ | 193.3.2.2 | $x^{3} + 965$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 193.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 193.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 193.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 193.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 193.6.0.1 | $x^{6} - x + 17$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 4866110647 | Data not computed | ||||||