Normalized defining polynomial
\( x^{21} - x^{20} - 85 x^{19} - 44 x^{18} + 2809 x^{17} + 5152 x^{16} - 41166 x^{15} - 131957 x^{14} + 189850 x^{13} + 1279532 x^{12} + 1063163 x^{11} - 3442335 x^{10} - 8884217 x^{9} - 7903686 x^{8} - 1827259 x^{7} + 1604980 x^{6} + 1042524 x^{5} + 68775 x^{4} - 81417 x^{3} - 15141 x^{2} + 1372 x + 343 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13136233521869762226411268456105692626944=2^{18}\cdot 7^{14}\cdot 43^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} - \frac{3}{7} a^{11} - \frac{3}{7} a^{10} + \frac{3}{7} a^{9} + \frac{1}{7} a^{8} - \frac{2}{7} a^{7} - \frac{2}{7} a^{5} - \frac{3}{7} a^{4} + \frac{1}{7} a^{3}$, $\frac{1}{7} a^{13} + \frac{2}{7} a^{11} + \frac{1}{7} a^{10} + \frac{3}{7} a^{9} + \frac{1}{7} a^{8} + \frac{1}{7} a^{7} - \frac{2}{7} a^{6} - \frac{2}{7} a^{5} - \frac{1}{7} a^{4} + \frac{3}{7} a^{3}$, $\frac{1}{7} a^{14} + \frac{2}{7} a^{10} + \frac{2}{7} a^{9} - \frac{1}{7} a^{8} + \frac{2}{7} a^{7} - \frac{2}{7} a^{6} + \frac{3}{7} a^{5} + \frac{2}{7} a^{4} - \frac{2}{7} a^{3}$, $\frac{1}{7} a^{15} + \frac{2}{7} a^{11} + \frac{2}{7} a^{10} - \frac{1}{7} a^{9} + \frac{2}{7} a^{8} - \frac{2}{7} a^{7} + \frac{3}{7} a^{6} + \frac{2}{7} a^{5} - \frac{2}{7} a^{4}$, $\frac{1}{7} a^{16} + \frac{1}{7} a^{11} - \frac{2}{7} a^{10} + \frac{3}{7} a^{9} + \frac{3}{7} a^{8} + \frac{2}{7} a^{6} + \frac{2}{7} a^{5} - \frac{1}{7} a^{4} - \frac{2}{7} a^{3}$, $\frac{1}{7} a^{17} + \frac{1}{7} a^{11} - \frac{1}{7} a^{10} - \frac{1}{7} a^{8} - \frac{3}{7} a^{7} + \frac{2}{7} a^{6} + \frac{1}{7} a^{5} + \frac{1}{7} a^{4} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{18} + \frac{2}{7} a^{11} + \frac{3}{7} a^{10} + \frac{3}{7} a^{9} + \frac{3}{7} a^{8} - \frac{3}{7} a^{7} + \frac{1}{7} a^{6} + \frac{3}{7} a^{5} + \frac{2}{7} a^{4} - \frac{1}{7} a^{3}$, $\frac{1}{2177} a^{19} - \frac{81}{2177} a^{18} + \frac{15}{2177} a^{17} - \frac{102}{2177} a^{16} - \frac{139}{2177} a^{15} - \frac{9}{311} a^{14} + \frac{109}{2177} a^{13} + \frac{23}{2177} a^{12} + \frac{142}{2177} a^{11} + \frac{277}{2177} a^{10} - \frac{864}{2177} a^{9} - \frac{267}{2177} a^{8} + \frac{488}{2177} a^{7} + \frac{16}{2177} a^{6} + \frac{1055}{2177} a^{5} + \frac{340}{2177} a^{4} + \frac{604}{2177} a^{3} - \frac{51}{311} a^{2} - \frac{31}{311} a + \frac{80}{311}$, $\frac{1}{6624640578226338459736644172412571415427} a^{20} - \frac{1137511897984629778056102897043446602}{6624640578226338459736644172412571415427} a^{19} - \frac{449790613349700985511517407888941718760}{6624640578226338459736644172412571415427} a^{18} + \frac{369828105122495367809276168133492196693}{6624640578226338459736644172412571415427} a^{17} + \frac{455830257529664460037092278533942642210}{6624640578226338459736644172412571415427} a^{16} + \frac{4431694836456396685184019651336368030}{135196746494415070606870289232909620723} a^{15} + \frac{317502059485304022800361001738381337878}{6624640578226338459736644172412571415427} a^{14} + \frac{6856069833837186771797111166990529447}{946377225460905494248092024630367345061} a^{13} + \frac{308522980683302477826713080103404708316}{6624640578226338459736644172412571415427} a^{12} - \frac{278642145619552269349133170419168978780}{6624640578226338459736644172412571415427} a^{11} + \frac{1935034202776364747037316108180487300119}{6624640578226338459736644172412571415427} a^{10} + \frac{1958622590453281158331065986743296445192}{6624640578226338459736644172412571415427} a^{9} + \frac{3232928972742926450525845901176819352613}{6624640578226338459736644172412571415427} a^{8} - \frac{1463172671210166183188448247379398431}{3598392492246788951513657888328392947} a^{7} + \frac{194999143371270036282007479397684488597}{946377225460905494248092024630367345061} a^{6} + \frac{1778442526013557887709210832203949942719}{6624640578226338459736644172412571415427} a^{5} + \frac{409146508204983009559320118834390287553}{946377225460905494248092024630367345061} a^{4} - \frac{231647664517699491499192935476356385999}{946377225460905494248092024630367345061} a^{3} - \frac{9153015918259673906127639590717232845}{946377225460905494248092024630367345061} a^{2} + \frac{3811840426315496436181411545717676269}{135196746494415070606870289232909620723} a - \frac{11548581901467198574078886755297599558}{135196746494415070606870289232909620723}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18989130461400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 21 |
| The 5 conjugacy class representatives for $C_7:C_3$ |
| Character table for $C_7:C_3$ |
Intermediate fields
| 3.3.90601.1, 7.7.525346636864.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.7.525346636864.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $43$ | 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |