Normalized defining polynomial
\( x^{21} - 42 x^{19} + 756 x^{17} - 7616 x^{15} - 45 x^{14} + 47040 x^{13} + 1260 x^{12} - 183456 x^{11} - 13860 x^{10} + 448448 x^{9} + 75600 x^{8} - 657906 x^{7} - 211680 x^{6} + 517692 x^{5} + 282240 x^{4} - 138992 x^{3} - 141120 x^{2} - 36624 x - 3032 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12175326061159727433428578962906599730053347282944=2^{12}\cdot 3^{28}\cdot 7^{38}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $217.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{10}$, $\frac{1}{764} a^{18} - \frac{67}{382} a^{17} - \frac{9}{191} a^{16} - \frac{7}{191} a^{15} + \frac{79}{382} a^{14} - \frac{93}{191} a^{13} + \frac{54}{191} a^{12} - \frac{357}{764} a^{11} - \frac{67}{382} a^{10} - \frac{171}{382} a^{9} - \frac{14}{191} a^{8} + \frac{147}{382} a^{7} + \frac{28}{191} a^{6} + \frac{39}{191} a^{5} + \frac{85}{382} a^{4} + \frac{42}{191} a^{3} - \frac{47}{191} a^{2} - \frac{17}{191} a - \frac{10}{191}$, $\frac{1}{764} a^{19} - \frac{19}{382} a^{17} + \frac{57}{382} a^{16} - \frac{39}{191} a^{15} + \frac{43}{191} a^{14} + \frac{7}{191} a^{13} + \frac{319}{764} a^{12} + \frac{40}{191} a^{11} - \frac{86}{191} a^{10} + \frac{169}{382} a^{9} + \frac{12}{191} a^{8} - \frac{55}{191} a^{7} - \frac{29}{191} a^{6} - \frac{159}{382} a^{5} + \frac{7}{191} a^{4} + \frac{42}{191} a^{3} - \frac{12}{191} a^{2} + \frac{4}{191} a - \frac{3}{191}$, $\frac{1}{764} a^{20} - \frac{3}{191} a^{17} + \frac{1}{191} a^{16} - \frac{32}{191} a^{15} - \frac{20}{191} a^{14} - \frac{65}{764} a^{13} - \frac{9}{191} a^{12} - \frac{79}{382} a^{11} + \frac{53}{191} a^{10} + \frac{10}{191} a^{9} - \frac{14}{191} a^{8} + \frac{90}{191} a^{7} + \frac{59}{382} a^{6} - \frac{39}{191} a^{5} - \frac{62}{191} a^{4} + \frac{56}{191} a^{3} - \frac{63}{191} a^{2} - \frac{76}{191} a + \frac{2}{191}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3886965271160000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3087 |
| The 63 conjugacy class representatives for t21n34 are not computed |
| Character table for t21n34 is not computed |
Intermediate fields
| 3.3.3969.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | R | $21$ | $21$ | $21$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | $21$ | $21$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| $3$ | 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||