Normalized defining polynomial
\( x^{21} - 42 x^{19} + 756 x^{17} - 7616 x^{15} - 3 x^{14} + 47040 x^{13} + 84 x^{12} - 183456 x^{11} - 924 x^{10} + 448448 x^{9} + 5040 x^{8} - 658998 x^{7} - 14112 x^{6} + 532980 x^{5} + 18816 x^{4} - 200144 x^{3} - 9408 x^{2} + 24528 x + 1448 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12175326061159727433428578962906599730053347282944=2^{12}\cdot 3^{28}\cdot 7^{38}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $217.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{282} a^{14} - \frac{14}{141} a^{12} + \frac{13}{141} a^{10} + \frac{2}{47} a^{8} - \frac{59}{282} a^{7} - \frac{15}{47} a^{6} - \frac{10}{141} a^{5} - \frac{34}{141} a^{4} + \frac{40}{141} a^{3} + \frac{17}{141} a^{2} - \frac{40}{141} a + \frac{23}{141}$, $\frac{1}{282} a^{15} - \frac{14}{141} a^{13} + \frac{13}{141} a^{11} + \frac{2}{47} a^{9} - \frac{59}{282} a^{8} - \frac{15}{47} a^{7} - \frac{10}{141} a^{6} - \frac{34}{141} a^{5} + \frac{40}{141} a^{4} + \frac{17}{141} a^{3} - \frac{40}{141} a^{2} + \frac{23}{141} a$, $\frac{1}{282} a^{16} + \frac{44}{141} a^{12} - \frac{53}{141} a^{10} - \frac{59}{282} a^{9} - \frac{6}{47} a^{8} + \frac{10}{141} a^{7} - \frac{25}{141} a^{6} + \frac{14}{47} a^{5} + \frac{52}{141} a^{4} - \frac{16}{47} a^{3} - \frac{65}{141} a^{2} + \frac{8}{141} a - \frac{61}{141}$, $\frac{1}{282} a^{17} + \frac{44}{141} a^{13} - \frac{53}{141} a^{11} - \frac{59}{282} a^{10} - \frac{6}{47} a^{9} + \frac{10}{141} a^{8} - \frac{25}{141} a^{7} + \frac{14}{47} a^{6} + \frac{52}{141} a^{5} - \frac{16}{47} a^{4} - \frac{65}{141} a^{3} + \frac{8}{141} a^{2} - \frac{61}{141} a$, $\frac{1}{44556} a^{18} - \frac{35}{22278} a^{17} - \frac{3}{3713} a^{16} + \frac{5}{22278} a^{15} + \frac{11}{7426} a^{14} - \frac{2879}{11139} a^{13} + \frac{742}{3713} a^{12} + \frac{2545}{44556} a^{11} + \frac{2727}{7426} a^{10} + \frac{8737}{22278} a^{9} + \frac{725}{7426} a^{8} - \frac{9931}{22278} a^{7} + \frac{1650}{3713} a^{6} - \frac{263}{11139} a^{5} + \frac{2455}{7426} a^{4} + \frac{5467}{11139} a^{3} + \frac{1497}{3713} a^{2} + \frac{3392}{11139} a + \frac{5357}{11139}$, $\frac{1}{44556} a^{19} - \frac{19}{22278} a^{17} + \frac{3}{7426} a^{16} - \frac{2}{3713} a^{15} + \frac{14}{11139} a^{14} + \frac{3094}{11139} a^{13} - \frac{14707}{44556} a^{12} + \frac{936}{3713} a^{11} - \frac{3848}{11139} a^{10} + \frac{725}{22278} a^{9} + \frac{5155}{11139} a^{8} + \frac{2990}{11139} a^{7} - \frac{2311}{11139} a^{6} - \frac{857}{22278} a^{5} - \frac{539}{11139} a^{4} - \frac{368}{3713} a^{3} - \frac{4084}{11139} a^{2} - \frac{49}{11139} a - \frac{892}{11139}$, $\frac{1}{44556} a^{20} + \frac{11}{11139} a^{17} + \frac{5}{7426} a^{16} - \frac{19}{22278} a^{15} + \frac{8}{11139} a^{14} + \frac{20105}{44556} a^{13} - \frac{136}{11139} a^{12} + \frac{3529}{22278} a^{11} + \frac{4240}{11139} a^{10} + \frac{4117}{22278} a^{9} - \frac{7513}{22278} a^{8} + \frac{8}{79} a^{7} - \frac{10493}{22278} a^{6} + \frac{1466}{3713} a^{5} - \frac{2105}{11139} a^{4} + \frac{50}{141} a^{3} - \frac{3902}{11139} a^{2} - \frac{1951}{11139} a + \frac{536}{11139}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4446193323300000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3087 |
| The 63 conjugacy class representatives for t21n34 are not computed |
| Character table for t21n34 is not computed |
Intermediate fields
| 3.3.3969.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | R | $21$ | $21$ | $21$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | $21$ | $21$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| $3$ | 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||