Normalized defining polynomial
\( x^{21} - x^{20} - 60 x^{19} + 133 x^{18} + 1305 x^{17} - 4493 x^{16} - 10801 x^{15} + 62425 x^{14} - 2588 x^{13} - 380273 x^{12} + 489841 x^{11} + 832624 x^{10} - 2307149 x^{9} + 540263 x^{8} + 3165855 x^{7} - 3188668 x^{6} - 157753 x^{5} + 1481414 x^{4} - 380716 x^{3} - 205872 x^{2} + 50035 x + 14459 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1191446152405248657777607437681912764659201=127^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $100.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(127\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{127}(64,·)$, $\chi_{127}(1,·)$, $\chi_{127}(2,·)$, $\chi_{127}(4,·)$, $\chi_{127}(8,·)$, $\chi_{127}(73,·)$, $\chi_{127}(76,·)$, $\chi_{127}(16,·)$, $\chi_{127}(19,·)$, $\chi_{127}(87,·)$, $\chi_{127}(25,·)$, $\chi_{127}(94,·)$, $\chi_{127}(32,·)$, $\chi_{127}(100,·)$, $\chi_{127}(38,·)$, $\chi_{127}(107,·)$, $\chi_{127}(47,·)$, $\chi_{127}(50,·)$, $\chi_{127}(117,·)$, $\chi_{127}(122,·)$, $\chi_{127}(61,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{19} a^{15} - \frac{4}{19} a^{14} + \frac{4}{19} a^{13} - \frac{9}{19} a^{12} + \frac{7}{19} a^{11} + \frac{2}{19} a^{10} + \frac{1}{19} a^{9} + \frac{2}{19} a^{8} + \frac{4}{19} a^{7} + \frac{9}{19} a^{6} - \frac{7}{19} a^{5} - \frac{2}{19} a^{4} - \frac{2}{19} a^{3} + \frac{2}{19} a^{2} - \frac{8}{19} a$, $\frac{1}{19} a^{16} + \frac{7}{19} a^{14} + \frac{7}{19} a^{13} + \frac{9}{19} a^{12} - \frac{8}{19} a^{11} + \frac{9}{19} a^{10} + \frac{6}{19} a^{9} - \frac{7}{19} a^{8} + \frac{6}{19} a^{7} - \frac{9}{19} a^{6} + \frac{8}{19} a^{5} + \frac{9}{19} a^{4} - \frac{6}{19} a^{3} + \frac{6}{19} a$, $\frac{1}{19} a^{17} - \frac{3}{19} a^{14} - \frac{2}{19} a^{12} - \frac{2}{19} a^{11} - \frac{8}{19} a^{10} + \frac{5}{19} a^{9} - \frac{8}{19} a^{8} + \frac{1}{19} a^{7} + \frac{2}{19} a^{6} + \frac{1}{19} a^{5} + \frac{8}{19} a^{4} - \frac{5}{19} a^{3} - \frac{8}{19} a^{2} - \frac{1}{19} a$, $\frac{1}{19} a^{18} + \frac{7}{19} a^{14} - \frac{9}{19} a^{13} + \frac{9}{19} a^{12} - \frac{6}{19} a^{11} - \frac{8}{19} a^{10} - \frac{5}{19} a^{9} + \frac{7}{19} a^{8} - \frac{5}{19} a^{7} + \frac{9}{19} a^{6} + \frac{6}{19} a^{5} + \frac{8}{19} a^{4} + \frac{5}{19} a^{3} + \frac{5}{19} a^{2} - \frac{5}{19} a$, $\frac{1}{361} a^{19} - \frac{5}{361} a^{18} + \frac{9}{361} a^{16} - \frac{4}{361} a^{15} - \frac{127}{361} a^{14} - \frac{155}{361} a^{13} - \frac{42}{361} a^{12} - \frac{108}{361} a^{11} - \frac{58}{361} a^{10} - \frac{134}{361} a^{9} - \frac{163}{361} a^{8} + \frac{44}{361} a^{7} + \frac{142}{361} a^{6} - \frac{63}{361} a^{5} - \frac{122}{361} a^{4} - \frac{52}{361} a^{3} - \frac{147}{361} a^{2} - \frac{156}{361} a + \frac{9}{19}$, $\frac{1}{91645163994998292140053} a^{20} + \frac{81390783967321781390}{91645163994998292140053} a^{19} + \frac{53091926664796047464}{91645163994998292140053} a^{18} - \frac{50378893164675068582}{91645163994998292140053} a^{17} - \frac{2397456927174675725}{91645163994998292140053} a^{16} - \frac{196482339406237010687}{91645163994998292140053} a^{15} + \frac{38717242443039573702791}{91645163994998292140053} a^{14} - \frac{38777672873334661276611}{91645163994998292140053} a^{13} - \frac{3122878917901743698913}{91645163994998292140053} a^{12} + \frac{2783615504292133431868}{91645163994998292140053} a^{11} + \frac{208242830477412135940}{4823429683947278533687} a^{10} + \frac{972731103264732496901}{91645163994998292140053} a^{9} + \frac{25312409631927821423823}{91645163994998292140053} a^{8} + \frac{10671189488722492710378}{91645163994998292140053} a^{7} - \frac{38385407135289506130505}{91645163994998292140053} a^{6} + \frac{5995836102839197366698}{91645163994998292140053} a^{5} + \frac{1961701664912517456919}{91645163994998292140053} a^{4} + \frac{379321316136623540071}{4823429683947278533687} a^{3} - \frac{16114473854175013026833}{91645163994998292140053} a^{2} - \frac{7324239103892453380369}{91645163994998292140053} a + \frac{1230061077287477004782}{4823429683947278533687}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 399125736989601.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.16129.1, 7.7.4195872914689.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | $21$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{21}$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | $21$ | $21$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 127 | Data not computed | ||||||