Properties

Label 21.21.119...201.1
Degree $21$
Signature $[21, 0]$
Discriminant $1.191\times 10^{42}$
Root discriminant \(100.84\)
Ramified prime $127$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_{21}$ (as 21T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^21 - x^20 - 60*x^19 + 133*x^18 + 1305*x^17 - 4493*x^16 - 10801*x^15 + 62425*x^14 - 2588*x^13 - 380273*x^12 + 489841*x^11 + 832624*x^10 - 2307149*x^9 + 540263*x^8 + 3165855*x^7 - 3188668*x^6 - 157753*x^5 + 1481414*x^4 - 380716*x^3 - 205872*x^2 + 50035*x + 14459)
 
gp: K = bnfinit(y^21 - y^20 - 60*y^19 + 133*y^18 + 1305*y^17 - 4493*y^16 - 10801*y^15 + 62425*y^14 - 2588*y^13 - 380273*y^12 + 489841*y^11 + 832624*y^10 - 2307149*y^9 + 540263*y^8 + 3165855*y^7 - 3188668*y^6 - 157753*y^5 + 1481414*y^4 - 380716*y^3 - 205872*y^2 + 50035*y + 14459, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - x^20 - 60*x^19 + 133*x^18 + 1305*x^17 - 4493*x^16 - 10801*x^15 + 62425*x^14 - 2588*x^13 - 380273*x^12 + 489841*x^11 + 832624*x^10 - 2307149*x^9 + 540263*x^8 + 3165855*x^7 - 3188668*x^6 - 157753*x^5 + 1481414*x^4 - 380716*x^3 - 205872*x^2 + 50035*x + 14459);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - x^20 - 60*x^19 + 133*x^18 + 1305*x^17 - 4493*x^16 - 10801*x^15 + 62425*x^14 - 2588*x^13 - 380273*x^12 + 489841*x^11 + 832624*x^10 - 2307149*x^9 + 540263*x^8 + 3165855*x^7 - 3188668*x^6 - 157753*x^5 + 1481414*x^4 - 380716*x^3 - 205872*x^2 + 50035*x + 14459)
 

\( x^{21} - x^{20} - 60 x^{19} + 133 x^{18} + 1305 x^{17} - 4493 x^{16} - 10801 x^{15} + 62425 x^{14} + \cdots + 14459 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $21$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[21, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1191446152405248657777607437681912764659201\) \(\medspace = 127^{20}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(100.84\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $127^{20/21}\approx 100.83762107060207$
Ramified primes:   \(127\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $21$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(127\)
Dirichlet character group:    $\lbrace$$\chi_{127}(64,·)$, $\chi_{127}(1,·)$, $\chi_{127}(2,·)$, $\chi_{127}(4,·)$, $\chi_{127}(8,·)$, $\chi_{127}(73,·)$, $\chi_{127}(76,·)$, $\chi_{127}(16,·)$, $\chi_{127}(19,·)$, $\chi_{127}(87,·)$, $\chi_{127}(25,·)$, $\chi_{127}(94,·)$, $\chi_{127}(32,·)$, $\chi_{127}(100,·)$, $\chi_{127}(38,·)$, $\chi_{127}(107,·)$, $\chi_{127}(47,·)$, $\chi_{127}(50,·)$, $\chi_{127}(117,·)$, $\chi_{127}(122,·)$, $\chi_{127}(61,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{19}a^{15}-\frac{4}{19}a^{14}+\frac{4}{19}a^{13}-\frac{9}{19}a^{12}+\frac{7}{19}a^{11}+\frac{2}{19}a^{10}+\frac{1}{19}a^{9}+\frac{2}{19}a^{8}+\frac{4}{19}a^{7}+\frac{9}{19}a^{6}-\frac{7}{19}a^{5}-\frac{2}{19}a^{4}-\frac{2}{19}a^{3}+\frac{2}{19}a^{2}-\frac{8}{19}a$, $\frac{1}{19}a^{16}+\frac{7}{19}a^{14}+\frac{7}{19}a^{13}+\frac{9}{19}a^{12}-\frac{8}{19}a^{11}+\frac{9}{19}a^{10}+\frac{6}{19}a^{9}-\frac{7}{19}a^{8}+\frac{6}{19}a^{7}-\frac{9}{19}a^{6}+\frac{8}{19}a^{5}+\frac{9}{19}a^{4}-\frac{6}{19}a^{3}+\frac{6}{19}a$, $\frac{1}{19}a^{17}-\frac{3}{19}a^{14}-\frac{2}{19}a^{12}-\frac{2}{19}a^{11}-\frac{8}{19}a^{10}+\frac{5}{19}a^{9}-\frac{8}{19}a^{8}+\frac{1}{19}a^{7}+\frac{2}{19}a^{6}+\frac{1}{19}a^{5}+\frac{8}{19}a^{4}-\frac{5}{19}a^{3}-\frac{8}{19}a^{2}-\frac{1}{19}a$, $\frac{1}{19}a^{18}+\frac{7}{19}a^{14}-\frac{9}{19}a^{13}+\frac{9}{19}a^{12}-\frac{6}{19}a^{11}-\frac{8}{19}a^{10}-\frac{5}{19}a^{9}+\frac{7}{19}a^{8}-\frac{5}{19}a^{7}+\frac{9}{19}a^{6}+\frac{6}{19}a^{5}+\frac{8}{19}a^{4}+\frac{5}{19}a^{3}+\frac{5}{19}a^{2}-\frac{5}{19}a$, $\frac{1}{361}a^{19}-\frac{5}{361}a^{18}+\frac{9}{361}a^{16}-\frac{4}{361}a^{15}-\frac{127}{361}a^{14}-\frac{155}{361}a^{13}-\frac{42}{361}a^{12}-\frac{108}{361}a^{11}-\frac{58}{361}a^{10}-\frac{134}{361}a^{9}-\frac{163}{361}a^{8}+\frac{44}{361}a^{7}+\frac{142}{361}a^{6}-\frac{63}{361}a^{5}-\frac{122}{361}a^{4}-\frac{52}{361}a^{3}-\frac{147}{361}a^{2}-\frac{156}{361}a+\frac{9}{19}$, $\frac{1}{91\!\cdots\!53}a^{20}+\frac{81\!\cdots\!90}{91\!\cdots\!53}a^{19}+\frac{53\!\cdots\!64}{91\!\cdots\!53}a^{18}-\frac{50\!\cdots\!82}{91\!\cdots\!53}a^{17}-\frac{23\!\cdots\!25}{91\!\cdots\!53}a^{16}-\frac{19\!\cdots\!87}{91\!\cdots\!53}a^{15}+\frac{38\!\cdots\!91}{91\!\cdots\!53}a^{14}-\frac{38\!\cdots\!11}{91\!\cdots\!53}a^{13}-\frac{31\!\cdots\!13}{91\!\cdots\!53}a^{12}+\frac{27\!\cdots\!68}{91\!\cdots\!53}a^{11}+\frac{20\!\cdots\!40}{48\!\cdots\!87}a^{10}+\frac{97\!\cdots\!01}{91\!\cdots\!53}a^{9}+\frac{25\!\cdots\!23}{91\!\cdots\!53}a^{8}+\frac{10\!\cdots\!78}{91\!\cdots\!53}a^{7}-\frac{38\!\cdots\!05}{91\!\cdots\!53}a^{6}+\frac{59\!\cdots\!98}{91\!\cdots\!53}a^{5}+\frac{19\!\cdots\!19}{91\!\cdots\!53}a^{4}+\frac{37\!\cdots\!71}{48\!\cdots\!87}a^{3}-\frac{16\!\cdots\!33}{91\!\cdots\!53}a^{2}-\frac{73\!\cdots\!69}{91\!\cdots\!53}a+\frac{12\!\cdots\!82}{48\!\cdots\!87}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $19$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $20$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{68\!\cdots\!49}{91\!\cdots\!53}a^{20}+\frac{73\!\cdots\!33}{91\!\cdots\!53}a^{19}-\frac{39\!\cdots\!60}{91\!\cdots\!53}a^{18}+\frac{95\!\cdots\!22}{91\!\cdots\!53}a^{17}+\frac{91\!\cdots\!00}{91\!\cdots\!53}a^{16}-\frac{12\!\cdots\!63}{91\!\cdots\!53}a^{15}-\frac{98\!\cdots\!95}{91\!\cdots\!53}a^{14}+\frac{22\!\cdots\!52}{91\!\cdots\!53}a^{13}+\frac{44\!\cdots\!37}{91\!\cdots\!53}a^{12}-\frac{16\!\cdots\!48}{91\!\cdots\!53}a^{11}-\frac{52\!\cdots\!14}{48\!\cdots\!87}a^{10}+\frac{54\!\cdots\!19}{91\!\cdots\!53}a^{9}-\frac{46\!\cdots\!78}{91\!\cdots\!53}a^{8}-\frac{57\!\cdots\!27}{91\!\cdots\!53}a^{7}+\frac{99\!\cdots\!43}{91\!\cdots\!53}a^{6}-\frac{15\!\cdots\!55}{91\!\cdots\!53}a^{5}-\frac{42\!\cdots\!24}{91\!\cdots\!53}a^{4}+\frac{84\!\cdots\!44}{48\!\cdots\!87}a^{3}+\frac{60\!\cdots\!66}{91\!\cdots\!53}a^{2}-\frac{19\!\cdots\!79}{91\!\cdots\!53}a-\frac{26\!\cdots\!55}{48\!\cdots\!87}$, $\frac{20\!\cdots\!01}{91\!\cdots\!53}a^{20}+\frac{26\!\cdots\!39}{91\!\cdots\!53}a^{19}-\frac{11\!\cdots\!90}{91\!\cdots\!53}a^{18}+\frac{86\!\cdots\!24}{91\!\cdots\!53}a^{17}+\frac{26\!\cdots\!42}{91\!\cdots\!53}a^{16}-\frac{29\!\cdots\!06}{91\!\cdots\!53}a^{15}-\frac{29\!\cdots\!31}{91\!\cdots\!53}a^{14}+\frac{59\!\cdots\!52}{91\!\cdots\!53}a^{13}+\frac{13\!\cdots\!38}{91\!\cdots\!53}a^{12}-\frac{46\!\cdots\!70}{91\!\cdots\!53}a^{11}-\frac{96\!\cdots\!62}{91\!\cdots\!53}a^{10}+\frac{15\!\cdots\!42}{91\!\cdots\!53}a^{9}-\frac{11\!\cdots\!15}{91\!\cdots\!53}a^{8}-\frac{16\!\cdots\!07}{91\!\cdots\!53}a^{7}+\frac{25\!\cdots\!79}{91\!\cdots\!53}a^{6}-\frac{27\!\cdots\!19}{91\!\cdots\!53}a^{5}-\frac{11\!\cdots\!74}{91\!\cdots\!53}a^{4}+\frac{37\!\cdots\!64}{91\!\cdots\!53}a^{3}+\frac{16\!\cdots\!89}{91\!\cdots\!53}a^{2}-\frac{46\!\cdots\!83}{91\!\cdots\!53}a-\frac{65\!\cdots\!54}{48\!\cdots\!87}$, $\frac{17\!\cdots\!76}{91\!\cdots\!53}a^{20}+\frac{21\!\cdots\!10}{91\!\cdots\!53}a^{19}-\frac{10\!\cdots\!08}{91\!\cdots\!53}a^{18}+\frac{82\!\cdots\!08}{91\!\cdots\!53}a^{17}+\frac{23\!\cdots\!59}{91\!\cdots\!53}a^{16}-\frac{27\!\cdots\!00}{91\!\cdots\!53}a^{15}-\frac{13\!\cdots\!70}{48\!\cdots\!87}a^{14}+\frac{53\!\cdots\!98}{91\!\cdots\!53}a^{13}+\frac{11\!\cdots\!56}{91\!\cdots\!53}a^{12}-\frac{41\!\cdots\!04}{91\!\cdots\!53}a^{11}-\frac{68\!\cdots\!98}{91\!\cdots\!53}a^{10}+\frac{13\!\cdots\!22}{91\!\cdots\!53}a^{9}-\frac{10\!\cdots\!26}{91\!\cdots\!53}a^{8}-\frac{14\!\cdots\!32}{91\!\cdots\!53}a^{7}+\frac{23\!\cdots\!08}{91\!\cdots\!53}a^{6}-\frac{27\!\cdots\!54}{91\!\cdots\!53}a^{5}-\frac{10\!\cdots\!42}{91\!\cdots\!53}a^{4}+\frac{34\!\cdots\!58}{91\!\cdots\!53}a^{3}+\frac{14\!\cdots\!72}{91\!\cdots\!53}a^{2}-\frac{43\!\cdots\!06}{91\!\cdots\!53}a-\frac{61\!\cdots\!02}{48\!\cdots\!87}$, $\frac{51\!\cdots\!60}{91\!\cdots\!53}a^{20}+\frac{12\!\cdots\!10}{91\!\cdots\!53}a^{19}-\frac{31\!\cdots\!42}{91\!\cdots\!53}a^{18}+\frac{30\!\cdots\!66}{91\!\cdots\!53}a^{17}+\frac{71\!\cdots\!78}{91\!\cdots\!53}a^{16}-\frac{14\!\cdots\!90}{91\!\cdots\!53}a^{15}-\frac{74\!\cdots\!96}{91\!\cdots\!53}a^{14}+\frac{23\!\cdots\!96}{91\!\cdots\!53}a^{13}+\frac{27\!\cdots\!88}{91\!\cdots\!53}a^{12}-\frac{16\!\cdots\!92}{91\!\cdots\!53}a^{11}+\frac{51\!\cdots\!84}{91\!\cdots\!53}a^{10}+\frac{25\!\cdots\!46}{48\!\cdots\!87}a^{9}-\frac{58\!\cdots\!61}{91\!\cdots\!53}a^{8}-\frac{22\!\cdots\!38}{48\!\cdots\!87}a^{7}+\frac{10\!\cdots\!06}{91\!\cdots\!53}a^{6}-\frac{31\!\cdots\!08}{91\!\cdots\!53}a^{5}-\frac{43\!\cdots\!68}{91\!\cdots\!53}a^{4}+\frac{21\!\cdots\!94}{91\!\cdots\!53}a^{3}+\frac{60\!\cdots\!32}{91\!\cdots\!53}a^{2}-\frac{25\!\cdots\!14}{91\!\cdots\!53}a-\frac{29\!\cdots\!96}{48\!\cdots\!87}$, $\frac{17\!\cdots\!06}{91\!\cdots\!53}a^{20}+\frac{12\!\cdots\!31}{91\!\cdots\!53}a^{19}-\frac{10\!\cdots\!34}{91\!\cdots\!53}a^{18}+\frac{57\!\cdots\!48}{91\!\cdots\!53}a^{17}+\frac{23\!\cdots\!16}{91\!\cdots\!53}a^{16}-\frac{38\!\cdots\!98}{91\!\cdots\!53}a^{15}-\frac{25\!\cdots\!27}{91\!\cdots\!53}a^{14}+\frac{66\!\cdots\!79}{91\!\cdots\!53}a^{13}+\frac{10\!\cdots\!32}{91\!\cdots\!53}a^{12}-\frac{48\!\cdots\!24}{91\!\cdots\!53}a^{11}+\frac{53\!\cdots\!37}{91\!\cdots\!53}a^{10}+\frac{15\!\cdots\!77}{91\!\cdots\!53}a^{9}-\frac{15\!\cdots\!52}{91\!\cdots\!53}a^{8}-\frac{14\!\cdots\!94}{91\!\cdots\!53}a^{7}+\frac{30\!\cdots\!78}{91\!\cdots\!53}a^{6}-\frac{62\!\cdots\!65}{91\!\cdots\!53}a^{5}-\frac{12\!\cdots\!55}{91\!\cdots\!53}a^{4}+\frac{53\!\cdots\!57}{91\!\cdots\!53}a^{3}+\frac{18\!\cdots\!96}{91\!\cdots\!53}a^{2}-\frac{65\!\cdots\!07}{91\!\cdots\!53}a-\frac{86\!\cdots\!27}{48\!\cdots\!87}$, $\frac{96\!\cdots\!58}{91\!\cdots\!53}a^{20}+\frac{11\!\cdots\!56}{91\!\cdots\!53}a^{19}-\frac{55\!\cdots\!20}{91\!\cdots\!53}a^{18}+\frac{88\!\cdots\!76}{91\!\cdots\!53}a^{17}+\frac{12\!\cdots\!14}{91\!\cdots\!53}a^{16}-\frac{15\!\cdots\!70}{91\!\cdots\!53}a^{15}-\frac{13\!\cdots\!06}{91\!\cdots\!53}a^{14}+\frac{30\!\cdots\!98}{91\!\cdots\!53}a^{13}+\frac{63\!\cdots\!34}{91\!\cdots\!53}a^{12}-\frac{23\!\cdots\!32}{91\!\cdots\!53}a^{11}-\frac{25\!\cdots\!08}{91\!\cdots\!53}a^{10}+\frac{74\!\cdots\!80}{91\!\cdots\!53}a^{9}-\frac{61\!\cdots\!92}{91\!\cdots\!53}a^{8}-\frac{79\!\cdots\!00}{91\!\cdots\!53}a^{7}+\frac{70\!\cdots\!96}{48\!\cdots\!87}a^{6}-\frac{19\!\cdots\!70}{91\!\cdots\!53}a^{5}-\frac{56\!\cdots\!91}{91\!\cdots\!53}a^{4}+\frac{20\!\cdots\!30}{91\!\cdots\!53}a^{3}+\frac{80\!\cdots\!80}{91\!\cdots\!53}a^{2}-\frac{25\!\cdots\!98}{91\!\cdots\!53}a-\frac{34\!\cdots\!14}{48\!\cdots\!87}$, $\frac{76\!\cdots\!48}{91\!\cdots\!53}a^{20}+\frac{88\!\cdots\!85}{91\!\cdots\!53}a^{19}-\frac{44\!\cdots\!75}{91\!\cdots\!53}a^{18}+\frac{69\!\cdots\!71}{91\!\cdots\!53}a^{17}+\frac{10\!\cdots\!27}{91\!\cdots\!53}a^{16}-\frac{12\!\cdots\!49}{91\!\cdots\!53}a^{15}-\frac{57\!\cdots\!46}{48\!\cdots\!87}a^{14}+\frac{24\!\cdots\!38}{91\!\cdots\!53}a^{13}+\frac{50\!\cdots\!50}{91\!\cdots\!53}a^{12}-\frac{18\!\cdots\!76}{91\!\cdots\!53}a^{11}-\frac{21\!\cdots\!82}{91\!\cdots\!53}a^{10}+\frac{59\!\cdots\!77}{91\!\cdots\!53}a^{9}-\frac{48\!\cdots\!03}{91\!\cdots\!53}a^{8}-\frac{63\!\cdots\!15}{91\!\cdots\!53}a^{7}+\frac{10\!\cdots\!59}{91\!\cdots\!53}a^{6}-\frac{14\!\cdots\!40}{91\!\cdots\!53}a^{5}-\frac{44\!\cdots\!59}{91\!\cdots\!53}a^{4}+\frac{16\!\cdots\!07}{91\!\cdots\!53}a^{3}+\frac{63\!\cdots\!98}{91\!\cdots\!53}a^{2}-\frac{19\!\cdots\!85}{91\!\cdots\!53}a-\frac{26\!\cdots\!52}{48\!\cdots\!87}$, $\frac{13\!\cdots\!70}{91\!\cdots\!53}a^{20}+\frac{36\!\cdots\!62}{91\!\cdots\!53}a^{19}+\frac{23\!\cdots\!27}{91\!\cdots\!53}a^{18}-\frac{18\!\cdots\!39}{91\!\cdots\!53}a^{17}-\frac{11\!\cdots\!25}{91\!\cdots\!53}a^{16}+\frac{39\!\cdots\!99}{91\!\cdots\!53}a^{15}-\frac{35\!\cdots\!47}{91\!\cdots\!53}a^{14}-\frac{43\!\cdots\!83}{91\!\cdots\!53}a^{13}+\frac{34\!\cdots\!70}{91\!\cdots\!53}a^{12}+\frac{12\!\cdots\!83}{48\!\cdots\!87}a^{11}-\frac{34\!\cdots\!85}{91\!\cdots\!53}a^{10}-\frac{61\!\cdots\!20}{91\!\cdots\!53}a^{9}+\frac{13\!\cdots\!31}{91\!\cdots\!53}a^{8}+\frac{27\!\cdots\!67}{91\!\cdots\!53}a^{7}-\frac{19\!\cdots\!44}{91\!\cdots\!53}a^{6}+\frac{81\!\cdots\!71}{91\!\cdots\!53}a^{5}+\frac{71\!\cdots\!17}{91\!\cdots\!53}a^{4}-\frac{42\!\cdots\!63}{91\!\cdots\!53}a^{3}-\frac{45\!\cdots\!87}{48\!\cdots\!87}a^{2}+\frac{44\!\cdots\!29}{91\!\cdots\!53}a+\frac{41\!\cdots\!49}{48\!\cdots\!87}$, $\frac{14\!\cdots\!69}{91\!\cdots\!53}a^{20}+\frac{23\!\cdots\!75}{91\!\cdots\!53}a^{19}-\frac{80\!\cdots\!22}{91\!\cdots\!53}a^{18}-\frac{22\!\cdots\!70}{91\!\cdots\!53}a^{17}+\frac{18\!\cdots\!74}{91\!\cdots\!53}a^{16}-\frac{15\!\cdots\!27}{91\!\cdots\!53}a^{15}-\frac{20\!\cdots\!19}{91\!\cdots\!53}a^{14}+\frac{35\!\cdots\!73}{91\!\cdots\!53}a^{13}+\frac{10\!\cdots\!65}{91\!\cdots\!53}a^{12}-\frac{15\!\cdots\!60}{48\!\cdots\!87}a^{11}-\frac{11\!\cdots\!52}{91\!\cdots\!53}a^{10}+\frac{97\!\cdots\!22}{91\!\cdots\!53}a^{9}-\frac{58\!\cdots\!19}{91\!\cdots\!53}a^{8}-\frac{11\!\cdots\!82}{91\!\cdots\!53}a^{7}+\frac{14\!\cdots\!65}{91\!\cdots\!53}a^{6}-\frac{62\!\cdots\!43}{91\!\cdots\!53}a^{5}-\frac{65\!\cdots\!11}{91\!\cdots\!53}a^{4}+\frac{18\!\cdots\!76}{91\!\cdots\!53}a^{3}+\frac{47\!\cdots\!86}{48\!\cdots\!87}a^{2}-\frac{23\!\cdots\!97}{91\!\cdots\!53}a-\frac{34\!\cdots\!80}{48\!\cdots\!87}$, $\frac{55\!\cdots\!28}{91\!\cdots\!53}a^{20}+\frac{65\!\cdots\!98}{91\!\cdots\!53}a^{19}-\frac{32\!\cdots\!92}{91\!\cdots\!53}a^{18}+\frac{45\!\cdots\!08}{91\!\cdots\!53}a^{17}+\frac{74\!\cdots\!24}{91\!\cdots\!53}a^{16}-\frac{90\!\cdots\!76}{91\!\cdots\!53}a^{15}-\frac{80\!\cdots\!02}{91\!\cdots\!53}a^{14}+\frac{17\!\cdots\!28}{91\!\cdots\!53}a^{13}+\frac{36\!\cdots\!02}{91\!\cdots\!53}a^{12}-\frac{13\!\cdots\!46}{91\!\cdots\!53}a^{11}-\frac{16\!\cdots\!88}{91\!\cdots\!53}a^{10}+\frac{43\!\cdots\!26}{91\!\cdots\!53}a^{9}-\frac{34\!\cdots\!52}{91\!\cdots\!53}a^{8}-\frac{46\!\cdots\!92}{91\!\cdots\!53}a^{7}+\frac{76\!\cdots\!38}{91\!\cdots\!53}a^{6}-\frac{10\!\cdots\!82}{91\!\cdots\!53}a^{5}-\frac{17\!\cdots\!28}{48\!\cdots\!87}a^{4}+\frac{11\!\cdots\!02}{91\!\cdots\!53}a^{3}+\frac{46\!\cdots\!49}{91\!\cdots\!53}a^{2}-\frac{14\!\cdots\!66}{91\!\cdots\!53}a-\frac{19\!\cdots\!64}{48\!\cdots\!87}$, $\frac{96\!\cdots\!70}{91\!\cdots\!53}a^{20}+\frac{10\!\cdots\!92}{91\!\cdots\!53}a^{19}-\frac{55\!\cdots\!32}{91\!\cdots\!53}a^{18}+\frac{14\!\cdots\!68}{91\!\cdots\!53}a^{17}+\frac{12\!\cdots\!80}{91\!\cdots\!53}a^{16}-\frac{17\!\cdots\!22}{91\!\cdots\!53}a^{15}-\frac{13\!\cdots\!68}{91\!\cdots\!53}a^{14}+\frac{31\!\cdots\!10}{91\!\cdots\!53}a^{13}+\frac{62\!\cdots\!94}{91\!\cdots\!53}a^{12}-\frac{23\!\cdots\!44}{91\!\cdots\!53}a^{11}-\frac{12\!\cdots\!70}{91\!\cdots\!53}a^{10}+\frac{77\!\cdots\!68}{91\!\cdots\!53}a^{9}-\frac{66\!\cdots\!52}{91\!\cdots\!53}a^{8}-\frac{80\!\cdots\!18}{91\!\cdots\!53}a^{7}+\frac{14\!\cdots\!46}{91\!\cdots\!53}a^{6}-\frac{22\!\cdots\!84}{91\!\cdots\!53}a^{5}-\frac{60\!\cdots\!26}{91\!\cdots\!53}a^{4}+\frac{22\!\cdots\!93}{91\!\cdots\!53}a^{3}+\frac{86\!\cdots\!52}{91\!\cdots\!53}a^{2}-\frac{28\!\cdots\!64}{91\!\cdots\!53}a-\frac{37\!\cdots\!80}{48\!\cdots\!87}$, $\frac{14\!\cdots\!80}{91\!\cdots\!53}a^{20}+\frac{18\!\cdots\!35}{91\!\cdots\!53}a^{19}-\frac{85\!\cdots\!00}{91\!\cdots\!53}a^{18}+\frac{53\!\cdots\!20}{91\!\cdots\!53}a^{17}+\frac{10\!\cdots\!00}{48\!\cdots\!87}a^{16}-\frac{62\!\cdots\!85}{25\!\cdots\!73}a^{15}-\frac{21\!\cdots\!10}{91\!\cdots\!53}a^{14}+\frac{44\!\cdots\!30}{91\!\cdots\!53}a^{13}+\frac{52\!\cdots\!10}{48\!\cdots\!87}a^{12}-\frac{34\!\cdots\!00}{91\!\cdots\!53}a^{11}-\frac{62\!\cdots\!50}{91\!\cdots\!53}a^{10}+\frac{11\!\cdots\!85}{91\!\cdots\!53}a^{9}-\frac{85\!\cdots\!20}{91\!\cdots\!53}a^{8}-\frac{12\!\cdots\!65}{91\!\cdots\!53}a^{7}+\frac{19\!\cdots\!60}{91\!\cdots\!53}a^{6}-\frac{21\!\cdots\!82}{91\!\cdots\!53}a^{5}-\frac{83\!\cdots\!85}{91\!\cdots\!53}a^{4}+\frac{27\!\cdots\!85}{91\!\cdots\!53}a^{3}+\frac{11\!\cdots\!00}{91\!\cdots\!53}a^{2}-\frac{34\!\cdots\!50}{91\!\cdots\!53}a-\frac{48\!\cdots\!29}{48\!\cdots\!87}$, $\frac{10\!\cdots\!40}{91\!\cdots\!53}a^{20}+\frac{11\!\cdots\!52}{91\!\cdots\!53}a^{19}-\frac{59\!\cdots\!59}{91\!\cdots\!53}a^{18}+\frac{11\!\cdots\!79}{91\!\cdots\!53}a^{17}+\frac{13\!\cdots\!97}{91\!\cdots\!53}a^{16}-\frac{17\!\cdots\!06}{91\!\cdots\!53}a^{15}-\frac{14\!\cdots\!52}{91\!\cdots\!53}a^{14}+\frac{33\!\cdots\!76}{91\!\cdots\!53}a^{13}+\frac{67\!\cdots\!30}{91\!\cdots\!53}a^{12}-\frac{25\!\cdots\!16}{91\!\cdots\!53}a^{11}-\frac{11\!\cdots\!47}{48\!\cdots\!87}a^{10}+\frac{81\!\cdots\!91}{91\!\cdots\!53}a^{9}-\frac{67\!\cdots\!82}{91\!\cdots\!53}a^{8}-\frac{85\!\cdots\!15}{91\!\cdots\!53}a^{7}+\frac{14\!\cdots\!07}{91\!\cdots\!53}a^{6}-\frac{22\!\cdots\!98}{91\!\cdots\!53}a^{5}-\frac{61\!\cdots\!40}{91\!\cdots\!53}a^{4}+\frac{12\!\cdots\!53}{48\!\cdots\!87}a^{3}+\frac{86\!\cdots\!84}{91\!\cdots\!53}a^{2}-\frac{27\!\cdots\!03}{91\!\cdots\!53}a-\frac{37\!\cdots\!75}{48\!\cdots\!87}$, $\frac{29\!\cdots\!91}{91\!\cdots\!53}a^{20}+\frac{30\!\cdots\!85}{91\!\cdots\!53}a^{19}-\frac{17\!\cdots\!58}{91\!\cdots\!53}a^{18}+\frac{45\!\cdots\!98}{91\!\cdots\!53}a^{17}+\frac{39\!\cdots\!08}{91\!\cdots\!53}a^{16}-\frac{52\!\cdots\!16}{91\!\cdots\!53}a^{15}-\frac{42\!\cdots\!08}{91\!\cdots\!53}a^{14}+\frac{97\!\cdots\!08}{91\!\cdots\!53}a^{13}+\frac{18\!\cdots\!01}{91\!\cdots\!53}a^{12}-\frac{73\!\cdots\!61}{91\!\cdots\!53}a^{11}-\frac{42\!\cdots\!30}{91\!\cdots\!53}a^{10}+\frac{23\!\cdots\!06}{91\!\cdots\!53}a^{9}-\frac{20\!\cdots\!84}{91\!\cdots\!53}a^{8}-\frac{24\!\cdots\!52}{91\!\cdots\!53}a^{7}+\frac{43\!\cdots\!81}{91\!\cdots\!53}a^{6}-\frac{66\!\cdots\!22}{91\!\cdots\!53}a^{5}-\frac{18\!\cdots\!32}{91\!\cdots\!53}a^{4}+\frac{68\!\cdots\!64}{91\!\cdots\!53}a^{3}+\frac{26\!\cdots\!46}{91\!\cdots\!53}a^{2}-\frac{83\!\cdots\!73}{91\!\cdots\!53}a-\frac{11\!\cdots\!26}{48\!\cdots\!87}$, $\frac{28\!\cdots\!57}{91\!\cdots\!53}a^{20}+\frac{39\!\cdots\!18}{91\!\cdots\!53}a^{19}-\frac{16\!\cdots\!02}{91\!\cdots\!53}a^{18}-\frac{60\!\cdots\!48}{91\!\cdots\!53}a^{17}+\frac{37\!\cdots\!86}{91\!\cdots\!53}a^{16}-\frac{39\!\cdots\!71}{91\!\cdots\!53}a^{15}-\frac{41\!\cdots\!42}{91\!\cdots\!53}a^{14}+\frac{82\!\cdots\!64}{91\!\cdots\!53}a^{13}+\frac{19\!\cdots\!15}{91\!\cdots\!53}a^{12}-\frac{63\!\cdots\!21}{91\!\cdots\!53}a^{11}-\frac{15\!\cdots\!38}{91\!\cdots\!53}a^{10}+\frac{21\!\cdots\!98}{91\!\cdots\!53}a^{9}-\frac{15\!\cdots\!30}{91\!\cdots\!53}a^{8}-\frac{23\!\cdots\!21}{91\!\cdots\!53}a^{7}+\frac{35\!\cdots\!76}{91\!\cdots\!53}a^{6}-\frac{32\!\cdots\!04}{91\!\cdots\!53}a^{5}-\frac{80\!\cdots\!51}{48\!\cdots\!87}a^{4}+\frac{49\!\cdots\!05}{91\!\cdots\!53}a^{3}+\frac{21\!\cdots\!75}{91\!\cdots\!53}a^{2}-\frac{60\!\cdots\!17}{91\!\cdots\!53}a-\frac{85\!\cdots\!21}{48\!\cdots\!87}$, $\frac{11\!\cdots\!87}{91\!\cdots\!53}a^{20}+\frac{14\!\cdots\!33}{91\!\cdots\!53}a^{19}-\frac{33\!\cdots\!25}{48\!\cdots\!87}a^{18}+\frac{10\!\cdots\!75}{91\!\cdots\!53}a^{17}+\frac{14\!\cdots\!35}{91\!\cdots\!53}a^{16}-\frac{16\!\cdots\!11}{91\!\cdots\!53}a^{15}-\frac{15\!\cdots\!12}{91\!\cdots\!53}a^{14}+\frac{32\!\cdots\!29}{91\!\cdots\!53}a^{13}+\frac{74\!\cdots\!80}{91\!\cdots\!53}a^{12}-\frac{25\!\cdots\!83}{91\!\cdots\!53}a^{11}-\frac{50\!\cdots\!01}{91\!\cdots\!53}a^{10}+\frac{82\!\cdots\!48}{91\!\cdots\!53}a^{9}-\frac{61\!\cdots\!74}{91\!\cdots\!53}a^{8}-\frac{91\!\cdots\!72}{91\!\cdots\!53}a^{7}+\frac{14\!\cdots\!30}{91\!\cdots\!53}a^{6}-\frac{15\!\cdots\!78}{91\!\cdots\!53}a^{5}-\frac{60\!\cdots\!89}{91\!\cdots\!53}a^{4}+\frac{20\!\cdots\!75}{91\!\cdots\!53}a^{3}+\frac{85\!\cdots\!77}{91\!\cdots\!53}a^{2}-\frac{13\!\cdots\!44}{48\!\cdots\!87}a-\frac{18\!\cdots\!67}{25\!\cdots\!73}$, $\frac{30\!\cdots\!17}{91\!\cdots\!53}a^{20}+\frac{26\!\cdots\!60}{91\!\cdots\!53}a^{19}-\frac{17\!\cdots\!83}{91\!\cdots\!53}a^{18}+\frac{76\!\cdots\!25}{91\!\cdots\!53}a^{17}+\frac{41\!\cdots\!40}{91\!\cdots\!53}a^{16}-\frac{61\!\cdots\!94}{91\!\cdots\!53}a^{15}-\frac{44\!\cdots\!51}{91\!\cdots\!53}a^{14}+\frac{11\!\cdots\!72}{91\!\cdots\!53}a^{13}+\frac{18\!\cdots\!33}{91\!\cdots\!53}a^{12}-\frac{81\!\cdots\!15}{91\!\cdots\!53}a^{11}+\frac{39\!\cdots\!42}{91\!\cdots\!53}a^{10}+\frac{25\!\cdots\!12}{91\!\cdots\!53}a^{9}-\frac{24\!\cdots\!31}{91\!\cdots\!53}a^{8}-\frac{25\!\cdots\!24}{91\!\cdots\!53}a^{7}+\frac{49\!\cdots\!25}{91\!\cdots\!53}a^{6}-\frac{98\!\cdots\!87}{91\!\cdots\!53}a^{5}-\frac{20\!\cdots\!29}{91\!\cdots\!53}a^{4}+\frac{85\!\cdots\!99}{91\!\cdots\!53}a^{3}+\frac{29\!\cdots\!37}{91\!\cdots\!53}a^{2}-\frac{10\!\cdots\!68}{91\!\cdots\!53}a-\frac{13\!\cdots\!95}{48\!\cdots\!87}$, $\frac{29\!\cdots\!78}{48\!\cdots\!87}a^{20}+\frac{66\!\cdots\!66}{91\!\cdots\!53}a^{19}-\frac{32\!\cdots\!11}{91\!\cdots\!53}a^{18}+\frac{23\!\cdots\!59}{48\!\cdots\!87}a^{17}+\frac{74\!\cdots\!80}{91\!\cdots\!53}a^{16}-\frac{90\!\cdots\!74}{91\!\cdots\!53}a^{15}-\frac{80\!\cdots\!54}{91\!\cdots\!53}a^{14}+\frac{17\!\cdots\!91}{91\!\cdots\!53}a^{13}+\frac{36\!\cdots\!16}{91\!\cdots\!53}a^{12}-\frac{13\!\cdots\!71}{91\!\cdots\!53}a^{11}-\frac{15\!\cdots\!96}{91\!\cdots\!53}a^{10}+\frac{43\!\cdots\!98}{91\!\cdots\!53}a^{9}-\frac{35\!\cdots\!20}{91\!\cdots\!53}a^{8}-\frac{46\!\cdots\!79}{91\!\cdots\!53}a^{7}+\frac{77\!\cdots\!37}{91\!\cdots\!53}a^{6}-\frac{11\!\cdots\!37}{91\!\cdots\!53}a^{5}-\frac{32\!\cdots\!72}{91\!\cdots\!53}a^{4}+\frac{12\!\cdots\!10}{91\!\cdots\!53}a^{3}+\frac{46\!\cdots\!54}{91\!\cdots\!53}a^{2}-\frac{14\!\cdots\!75}{91\!\cdots\!53}a-\frac{19\!\cdots\!96}{48\!\cdots\!87}$, $\frac{74\!\cdots\!59}{91\!\cdots\!53}a^{20}+\frac{90\!\cdots\!54}{91\!\cdots\!53}a^{19}-\frac{42\!\cdots\!68}{91\!\cdots\!53}a^{18}+\frac{40\!\cdots\!46}{91\!\cdots\!53}a^{17}+\frac{98\!\cdots\!00}{91\!\cdots\!53}a^{16}-\frac{11\!\cdots\!30}{91\!\cdots\!53}a^{15}-\frac{10\!\cdots\!23}{91\!\cdots\!53}a^{14}+\frac{22\!\cdots\!67}{91\!\cdots\!53}a^{13}+\frac{49\!\cdots\!77}{91\!\cdots\!53}a^{12}-\frac{91\!\cdots\!42}{48\!\cdots\!87}a^{11}-\frac{26\!\cdots\!79}{91\!\cdots\!53}a^{10}+\frac{56\!\cdots\!39}{91\!\cdots\!53}a^{9}-\frac{44\!\cdots\!87}{91\!\cdots\!53}a^{8}-\frac{61\!\cdots\!57}{91\!\cdots\!53}a^{7}+\frac{99\!\cdots\!22}{91\!\cdots\!53}a^{6}-\frac{12\!\cdots\!41}{91\!\cdots\!53}a^{5}-\frac{42\!\cdots\!51}{91\!\cdots\!53}a^{4}+\frac{14\!\cdots\!05}{91\!\cdots\!53}a^{3}+\frac{32\!\cdots\!19}{48\!\cdots\!87}a^{2}-\frac{18\!\cdots\!20}{91\!\cdots\!53}a-\frac{25\!\cdots\!91}{48\!\cdots\!87}$, $\frac{37\!\cdots\!12}{91\!\cdots\!53}a^{20}+\frac{34\!\cdots\!66}{91\!\cdots\!53}a^{19}-\frac{21\!\cdots\!81}{91\!\cdots\!53}a^{18}+\frac{82\!\cdots\!78}{91\!\cdots\!53}a^{17}+\frac{50\!\cdots\!81}{91\!\cdots\!53}a^{16}-\frac{72\!\cdots\!96}{91\!\cdots\!53}a^{15}-\frac{54\!\cdots\!77}{91\!\cdots\!53}a^{14}+\frac{13\!\cdots\!76}{91\!\cdots\!53}a^{13}+\frac{23\!\cdots\!85}{91\!\cdots\!53}a^{12}-\frac{97\!\cdots\!66}{91\!\cdots\!53}a^{11}+\frac{90\!\cdots\!16}{91\!\cdots\!53}a^{10}+\frac{30\!\cdots\!88}{91\!\cdots\!53}a^{9}-\frac{28\!\cdots\!42}{91\!\cdots\!53}a^{8}-\frac{31\!\cdots\!22}{91\!\cdots\!53}a^{7}+\frac{58\!\cdots\!85}{91\!\cdots\!53}a^{6}-\frac{10\!\cdots\!52}{91\!\cdots\!53}a^{5}-\frac{24\!\cdots\!31}{91\!\cdots\!53}a^{4}+\frac{96\!\cdots\!37}{91\!\cdots\!53}a^{3}+\frac{34\!\cdots\!64}{91\!\cdots\!53}a^{2}-\frac{11\!\cdots\!84}{91\!\cdots\!53}a-\frac{15\!\cdots\!65}{48\!\cdots\!87}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 399125736989601.2 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{21}\cdot(2\pi)^{0}\cdot 399125736989601.2 \cdot 1}{2\cdot\sqrt{1191446152405248657777607437681912764659201}}\cr\approx \mathstrut & 0.383417946783065 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^21 - x^20 - 60*x^19 + 133*x^18 + 1305*x^17 - 4493*x^16 - 10801*x^15 + 62425*x^14 - 2588*x^13 - 380273*x^12 + 489841*x^11 + 832624*x^10 - 2307149*x^9 + 540263*x^8 + 3165855*x^7 - 3188668*x^6 - 157753*x^5 + 1481414*x^4 - 380716*x^3 - 205872*x^2 + 50035*x + 14459)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^21 - x^20 - 60*x^19 + 133*x^18 + 1305*x^17 - 4493*x^16 - 10801*x^15 + 62425*x^14 - 2588*x^13 - 380273*x^12 + 489841*x^11 + 832624*x^10 - 2307149*x^9 + 540263*x^8 + 3165855*x^7 - 3188668*x^6 - 157753*x^5 + 1481414*x^4 - 380716*x^3 - 205872*x^2 + 50035*x + 14459, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^21 - x^20 - 60*x^19 + 133*x^18 + 1305*x^17 - 4493*x^16 - 10801*x^15 + 62425*x^14 - 2588*x^13 - 380273*x^12 + 489841*x^11 + 832624*x^10 - 2307149*x^9 + 540263*x^8 + 3165855*x^7 - 3188668*x^6 - 157753*x^5 + 1481414*x^4 - 380716*x^3 - 205872*x^2 + 50035*x + 14459);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - x^20 - 60*x^19 + 133*x^18 + 1305*x^17 - 4493*x^16 - 10801*x^15 + 62425*x^14 - 2588*x^13 - 380273*x^12 + 489841*x^11 + 832624*x^10 - 2307149*x^9 + 540263*x^8 + 3165855*x^7 - 3188668*x^6 - 157753*x^5 + 1481414*x^4 - 380716*x^3 - 205872*x^2 + 50035*x + 14459);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{21}$ (as 21T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 21
The 21 conjugacy class representatives for $C_{21}$
Character table for $C_{21}$

Intermediate fields

3.3.16129.1, 7.7.4195872914689.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.7.0.1}{7} }^{3}$ $21$ ${\href{/padicField/5.7.0.1}{7} }^{3}$ $21$ $21$ $21$ $21$ ${\href{/padicField/19.1.0.1}{1} }^{21}$ $21$ $21$ $21$ ${\href{/padicField/37.3.0.1}{3} }^{7}$ $21$ $21$ ${\href{/padicField/47.7.0.1}{7} }^{3}$ $21$ ${\href{/padicField/59.3.0.1}{3} }^{7}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(127\) Copy content Toggle raw display 127.21.20.1$x^{21} + 127$$21$$1$$20$$C_{21}$$[\ ]_{21}$