Normalized defining polynomial
\( x^{21} - 6 x^{20} - 36 x^{19} + 249 x^{18} + 459 x^{17} - 4095 x^{16} - 2034 x^{15} + 34362 x^{14} - 5715 x^{13} - 157734 x^{12} + 90396 x^{11} + 390069 x^{10} - 341226 x^{9} - 463293 x^{8} + 549828 x^{7} + 168453 x^{6} - 342792 x^{5} + 54675 x^{4} + 31698 x^{3} - 2349 x^{2} - 891 x - 27 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(114573143280690357510711381762768711450624=2^{27}\cdot 3^{34}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{3} a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{3} a^{10}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{9} + \frac{1}{12} a^{8} + \frac{1}{12} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{10} + \frac{1}{12} a^{9} + \frac{1}{12} a^{8} - \frac{1}{6} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{36} a^{13} - \frac{1}{12} a^{10} + \frac{1}{12} a^{8} - \frac{1}{12} a^{7} + \frac{5}{12} a^{6} + \frac{1}{4} a^{3} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{36} a^{14} - \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{36} a^{15} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{2} a^{3} - \frac{1}{4} a$, $\frac{1}{36} a^{16} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{36} a^{17} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{36} a^{18} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{432} a^{19} - \frac{1}{144} a^{17} + \frac{1}{144} a^{16} - \frac{1}{72} a^{15} - \frac{1}{72} a^{12} + \frac{1}{48} a^{11} - \frac{1}{8} a^{10} + \frac{5}{48} a^{9} - \frac{1}{16} a^{8} + \frac{5}{48} a^{7} - \frac{1}{8} a^{6} - \frac{23}{48} a^{5} - \frac{1}{16} a^{4} + \frac{5}{16} a^{3} - \frac{1}{8} a^{2} - \frac{1}{16} a + \frac{5}{16}$, $\frac{1}{8887203101404904081328} a^{20} + \frac{2470082361482994253}{8887203101404904081328} a^{19} + \frac{29485820915405251823}{2962401033801634693776} a^{18} + \frac{939926908718303449}{185150064612602168361} a^{17} - \frac{1303300133227319387}{987467011267211564592} a^{16} - \frac{10899230454004277419}{1481200516900817346888} a^{15} - \frac{6504628638813793411}{740600258450408673444} a^{14} + \frac{4629973701289287317}{493733505633605782296} a^{13} - \frac{121115917259157037031}{2962401033801634693776} a^{12} - \frac{4249999133565733815}{329155670422403854864} a^{11} + \frac{124528272607192919711}{987467011267211564592} a^{10} - \frac{3379361475862918009}{164577835211201927432} a^{9} - \frac{68290991391319191943}{493733505633605782296} a^{8} - \frac{53169691470416484363}{329155670422403854864} a^{7} - \frac{483262487177104177861}{987467011267211564592} a^{6} + \frac{170876310246247053845}{493733505633605782296} a^{5} + \frac{6330304979603392571}{82288917605600963716} a^{4} + \frac{68499582336079895227}{329155670422403854864} a^{3} - \frac{65008941566663642787}{329155670422403854864} a^{2} - \frac{3989389812343774931}{20572229401400240929} a - \frac{83254871934947464903}{329155670422403854864}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 170702187428000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times F_7$ (as 21T9):
| A solvable group of order 126 |
| The 21 conjugacy class representatives for $C_3\times F_7$ |
| Character table for $C_3\times F_7$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 7.7.138584369664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||