Normalized defining polynomial
\( x^{21} - x^{20} - 49 x^{19} + 49 x^{18} + 928 x^{17} - 894 x^{16} - 8860 x^{15} + 7979 x^{14} + 46924 x^{13} - 38237 x^{12} - 141310 x^{11} + 99810 x^{10} + 233828 x^{9} - 134152 x^{8} - 188281 x^{7} + 79711 x^{6} + 52846 x^{5} - 17134 x^{4} - 3010 x^{3} + 526 x^{2} + 50 x - 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11025907029010321740711464965433403326464=2^{14}\cdot 37^{7}\cdot 577^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5} a^{15} + \frac{2}{5} a^{13} - \frac{1}{5} a^{12} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{2}{5} a^{9} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{16} + \frac{2}{5} a^{14} - \frac{1}{5} a^{13} + \frac{2}{5} a^{12} + \frac{2}{5} a^{11} - \frac{2}{5} a^{10} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{5} a^{17} - \frac{1}{5} a^{14} - \frac{2}{5} a^{13} - \frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{18} - \frac{2}{5} a^{14} + \frac{1}{5} a^{13} - \frac{2}{5} a^{12} - \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{6235} a^{19} - \frac{102}{6235} a^{18} + \frac{304}{6235} a^{17} + \frac{52}{1247} a^{16} + \frac{334}{6235} a^{15} - \frac{6}{215} a^{14} - \frac{444}{1247} a^{13} + \frac{547}{6235} a^{12} - \frac{185}{1247} a^{11} + \frac{25}{1247} a^{10} - \frac{589}{6235} a^{9} + \frac{3058}{6235} a^{8} - \frac{2396}{6235} a^{7} - \frac{1628}{6235} a^{6} - \frac{8}{6235} a^{5} - \frac{847}{6235} a^{4} - \frac{2734}{6235} a^{3} - \frac{2046}{6235} a^{2} - \frac{2364}{6235} a + \frac{1986}{6235}$, $\frac{1}{204184296061287395567468684735} a^{20} - \frac{837079845023690882139432}{40836859212257479113493736947} a^{19} - \frac{4844603481458346167050304781}{204184296061287395567468684735} a^{18} - \frac{7084361845929954033058973247}{204184296061287395567468684735} a^{17} - \frac{2964412504216790984787150527}{204184296061287395567468684735} a^{16} + \frac{255504147357404410791044690}{3141296862481344547191825919} a^{15} + \frac{92493211754542862441766401482}{204184296061287395567468684735} a^{14} + \frac{9945461243567077478863454974}{204184296061287395567468684735} a^{13} + \frac{3011399429771015989546299211}{15706484312406722735959129595} a^{12} - \frac{54671980404428964402885703583}{204184296061287395567468684735} a^{11} - \frac{82095341317459148240599614108}{204184296061287395567468684735} a^{10} - \frac{30914133149078916819183996012}{204184296061287395567468684735} a^{9} - \frac{76884879517545534351106134886}{204184296061287395567468684735} a^{8} - \frac{62713876657309919279483387048}{204184296061287395567468684735} a^{7} + \frac{3968507483354638945007452003}{204184296061287395567468684735} a^{6} - \frac{5315764549569465371875333087}{40836859212257479113493736947} a^{5} + \frac{83374760785634696232127218332}{204184296061287395567468684735} a^{4} + \frac{98238612280002277911277050462}{204184296061287395567468684735} a^{3} - \frac{3260425006970806088853289304}{40836859212257479113493736947} a^{2} - \frac{69450494834301551539389595286}{204184296061287395567468684735} a - \frac{24218842052512329958091436448}{204184296061287395567468684735}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30696176966900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times D_7$ (as 21T8):
| A solvable group of order 84 |
| The 15 conjugacy class representatives for $S_3\times D_7$ |
| Character table for $S_3\times D_7$ |
Intermediate fields
| 3.3.148.1, 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| 577 | Data not computed | ||||||