Normalized defining polynomial
\( x^{21} - 2 x^{20} - 256 x^{19} + 73 x^{18} + 27346 x^{17} + 35504 x^{16} - 1531304 x^{15} - 4259269 x^{14} + 45869477 x^{13} + 203255887 x^{12} - 617160327 x^{11} - 4718536280 x^{10} - 681015738 x^{9} + 49484338924 x^{8} + 101295873234 x^{7} - 118974058882 x^{6} - 695450161532 x^{5} - 910931620758 x^{4} - 272722236166 x^{3} + 292282628677 x^{2} + 169871274917 x + 4773334171 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1092512922202674436266826705883474247066109090498545961=29^{18}\cdot 8488201^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $374.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 8488201$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{29} a^{14} + \frac{13}{29} a^{13} + \frac{6}{29} a^{11} + \frac{7}{29} a^{10} + \frac{9}{29} a^{9} + \frac{5}{29} a^{8} + \frac{14}{29} a^{7} + \frac{11}{29} a^{6} - \frac{4}{29} a^{5} - \frac{12}{29} a^{4} + \frac{13}{29} a^{3} - \frac{5}{29} a - \frac{12}{29}$, $\frac{1}{29} a^{15} + \frac{5}{29} a^{13} + \frac{6}{29} a^{12} - \frac{13}{29} a^{11} + \frac{5}{29} a^{10} + \frac{4}{29} a^{9} + \frac{7}{29} a^{8} + \frac{3}{29} a^{7} - \frac{2}{29} a^{6} + \frac{11}{29} a^{5} - \frac{5}{29} a^{4} + \frac{5}{29} a^{3} - \frac{5}{29} a^{2} - \frac{5}{29} a + \frac{11}{29}$, $\frac{1}{29} a^{16} - \frac{1}{29} a^{13} - \frac{13}{29} a^{12} + \frac{4}{29} a^{11} - \frac{2}{29} a^{10} - \frac{9}{29} a^{9} + \frac{7}{29} a^{8} - \frac{14}{29} a^{7} + \frac{14}{29} a^{6} - \frac{14}{29} a^{5} + \frac{7}{29} a^{4} - \frac{12}{29} a^{3} - \frac{5}{29} a^{2} + \frac{7}{29} a + \frac{2}{29}$, $\frac{1}{29} a^{17} + \frac{4}{29} a^{12} + \frac{4}{29} a^{11} - \frac{2}{29} a^{10} - \frac{13}{29} a^{9} - \frac{9}{29} a^{8} - \frac{1}{29} a^{7} - \frac{3}{29} a^{6} + \frac{3}{29} a^{5} + \frac{5}{29} a^{4} + \frac{8}{29} a^{3} + \frac{7}{29} a^{2} - \frac{3}{29} a - \frac{12}{29}$, $\frac{1}{14297} a^{18} + \frac{21}{14297} a^{17} - \frac{75}{14297} a^{16} + \frac{176}{14297} a^{15} - \frac{180}{14297} a^{14} - \frac{6456}{14297} a^{13} - \frac{7074}{14297} a^{12} + \frac{5578}{14297} a^{11} - \frac{1851}{14297} a^{10} - \frac{1451}{14297} a^{9} - \frac{4269}{14297} a^{8} + \frac{3645}{14297} a^{7} + \frac{5171}{14297} a^{6} + \frac{1048}{14297} a^{5} + \frac{4406}{14297} a^{4} - \frac{994}{14297} a^{3} - \frac{4827}{14297} a^{2} - \frac{141}{493} a + \frac{248}{841}$, $\frac{1}{14297} a^{19} - \frac{23}{14297} a^{17} - \frac{13}{841} a^{16} + \frac{4}{841} a^{15} - \frac{211}{14297} a^{14} - \frac{3622}{14297} a^{13} + \frac{5246}{14297} a^{12} - \frac{4120}{14297} a^{11} + \frac{5868}{14297} a^{10} + \frac{4017}{14297} a^{9} + \frac{610}{14297} a^{8} + \frac{2083}{14297} a^{7} - \frac{3027}{14297} a^{6} + \frac{2118}{14297} a^{5} + \frac{3108}{14297} a^{4} - \frac{4659}{14297} a^{3} + \frac{5087}{14297} a^{2} - \frac{134}{14297} a + \frac{70}{841}$, $\frac{1}{25529842495900826799023800578246106596080972259358508516300850801683277470497327} a^{20} - \frac{13114848116740212192750876383401965231351085829510127528399695818268355795}{1501755440935342752883752975190947446828292485844618148017697105981369262970431} a^{19} - \frac{549629048285990100687743112922063791145439829196016630687786659233218635685}{25529842495900826799023800578246106596080972259358508516300850801683277470497327} a^{18} + \frac{164588330426753882228514604080094292380939283524711889361667656502813330286347}{25529842495900826799023800578246106596080972259358508516300850801683277470497327} a^{17} - \frac{379593313455968915313494323082136611462242451149889517539635879784587860916268}{25529842495900826799023800578246106596080972259358508516300850801683277470497327} a^{16} + \frac{204757794522793929169767757477446390983652356492211234744605783313111448825411}{25529842495900826799023800578246106596080972259358508516300850801683277470497327} a^{15} + \frac{324462259649765506166463856066425414505133202969019068400730759132649139759824}{25529842495900826799023800578246106596080972259358508516300850801683277470497327} a^{14} - \frac{231608154877671540432020556450560353974384340204069297657397305058620357093246}{25529842495900826799023800578246106596080972259358508516300850801683277470497327} a^{13} - \frac{5760601000747181147982116013507829037593628568310880738631118718262623639313363}{25529842495900826799023800578246106596080972259358508516300850801683277470497327} a^{12} - \frac{9248557558963871158022010596819356296175571011995808687465603980346638523007834}{25529842495900826799023800578246106596080972259358508516300850801683277470497327} a^{11} + \frac{3171083807851470995345989834929184493612779464953073924006722178904644714543807}{25529842495900826799023800578246106596080972259358508516300850801683277470497327} a^{10} + \frac{4298718329160860134346283817383746814311514806415648511181775430835870920072423}{25529842495900826799023800578246106596080972259358508516300850801683277470497327} a^{9} + \frac{4255906756733063348878919904072085388049731832887900488116211728298845860842924}{25529842495900826799023800578246106596080972259358508516300850801683277470497327} a^{8} + \frac{3928625229319843964885533879689433214504930573781470120255754967485246888643660}{25529842495900826799023800578246106596080972259358508516300850801683277470497327} a^{7} - \frac{216319947814325281855784279087409219866077798426082939591828949876313472761363}{25529842495900826799023800578246106596080972259358508516300850801683277470497327} a^{6} - \frac{9667434323511554479734984155127776695984748443567233663570547053402732806826013}{25529842495900826799023800578246106596080972259358508516300850801683277470497327} a^{5} - \frac{7521368525626770837932756050834224129321791793825399599301415050305547988198119}{25529842495900826799023800578246106596080972259358508516300850801683277470497327} a^{4} - \frac{2197390449077461261145826313179796233445295050302223877157712563360529976545051}{25529842495900826799023800578246106596080972259358508516300850801683277470497327} a^{3} + \frac{904841746556610109138906631006187695762083023557354429994188110748817822799367}{25529842495900826799023800578246106596080972259358508516300850801683277470497327} a^{2} + \frac{1931533264904611180250733945490177603248801186964804183316471863509424079089492}{25529842495900826799023800578246106596080972259358508516300850801683277470497327} a - \frac{4960166758346272380700949666569126552959746025362542030492310755283446208070}{25453482049751572082775474155778770285225296370247765220638933999684224796109}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 114374428295000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5103 |
| The 111 conjugacy class representatives for t21n39 are not computed |
| Character table for t21n39 is not computed |
Intermediate fields
| 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{12}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 8488201 | Data not computed | ||||||