Normalized defining polynomial
\( x^{21} - x^{20} - 245 x^{19} + 476 x^{18} + 24890 x^{17} - 73135 x^{16} - 1327176 x^{15} + 5429529 x^{14} + 37715638 x^{13} - 218703916 x^{12} - 442801271 x^{11} + 4761100953 x^{10} - 3165019633 x^{9} - 47570534141 x^{8} + 131252684385 x^{7} + 40363988082 x^{6} - 808912280361 x^{5} + 1785501964192 x^{4} - 1984626141539 x^{3} + 1236763524349 x^{2} - 409813020195 x + 56054702069 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1092512922202674436266826705883474247066109090498545961=29^{18}\cdot 8488201^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $374.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 8488201$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{29} a^{14} + \frac{14}{29} a^{13} - \frac{3}{29} a^{12} - \frac{10}{29} a^{11} + \frac{9}{29} a^{10} + \frac{5}{29} a^{9} + \frac{13}{29} a^{8} + \frac{12}{29} a^{7}$, $\frac{1}{29} a^{15} + \frac{4}{29} a^{13} + \frac{3}{29} a^{12} + \frac{4}{29} a^{11} - \frac{5}{29} a^{10} + \frac{1}{29} a^{9} + \frac{4}{29} a^{8} + \frac{6}{29} a^{7}$, $\frac{1}{29} a^{16} + \frac{5}{29} a^{13} - \frac{13}{29} a^{12} + \frac{6}{29} a^{11} - \frac{6}{29} a^{10} + \frac{13}{29} a^{9} + \frac{12}{29} a^{8} + \frac{10}{29} a^{7}$, $\frac{1}{29} a^{17} + \frac{4}{29} a^{13} - \frac{8}{29} a^{12} - \frac{14}{29} a^{11} - \frac{3}{29} a^{10} - \frac{13}{29} a^{9} + \frac{3}{29} a^{8} - \frac{2}{29} a^{7}$, $\frac{1}{29} a^{18} - \frac{6}{29} a^{13} - \frac{2}{29} a^{12} + \frac{8}{29} a^{11} + \frac{9}{29} a^{10} + \frac{12}{29} a^{9} + \frac{4}{29} a^{8} + \frac{10}{29} a^{7}$, $\frac{1}{29} a^{19} - \frac{5}{29} a^{13} - \frac{10}{29} a^{12} + \frac{7}{29} a^{11} + \frac{8}{29} a^{10} + \frac{5}{29} a^{9} + \frac{1}{29} a^{8} + \frac{14}{29} a^{7}$, $\frac{1}{3859069685077936510085171762237580326366792124652933777355965474659259392867192607379} a^{20} + \frac{14035415651616849482653779235298347087937558101012721603502497184082643293102719375}{3859069685077936510085171762237580326366792124652933777355965474659259392867192607379} a^{19} - \frac{36401620891439613418369945035888564781844277591463950495314711217832295072924825115}{3859069685077936510085171762237580326366792124652933777355965474659259392867192607379} a^{18} + \frac{38768897923407505041931775067951450351898426186608362452567254749083628892066765174}{3859069685077936510085171762237580326366792124652933777355965474659259392867192607379} a^{17} - \frac{17909249026753795543487553702461257312492995301168735043820745632900561125636260370}{3859069685077936510085171762237580326366792124652933777355965474659259392867192607379} a^{16} - \frac{26945497971970073914376493528596607611321230863079034538324952861316070426068696562}{3859069685077936510085171762237580326366792124652933777355965474659259392867192607379} a^{15} + \frac{194510378182110316932590638805541001994759480563824027803242299470741635344187690}{3859069685077936510085171762237580326366792124652933777355965474659259392867192607379} a^{14} + \frac{53693316691087561190247884498724173231105740431897512194185520501216038706573928785}{3859069685077936510085171762237580326366792124652933777355965474659259392867192607379} a^{13} - \frac{1544398288392754909778048216230302339491217602846513375246673452235392641605401762852}{3859069685077936510085171762237580326366792124652933777355965474659259392867192607379} a^{12} - \frac{1132354317759499898702143367596461958836906867583602434773857865117950786616979460995}{3859069685077936510085171762237580326366792124652933777355965474659259392867192607379} a^{11} - \frac{613221655764210904418537885300866280786824160055128396627044534925925736547216251734}{3859069685077936510085171762237580326366792124652933777355965474659259392867192607379} a^{10} - \frac{1010881903852087840295163112984563984332618588974136920180630091430665023756136540516}{3859069685077936510085171762237580326366792124652933777355965474659259392867192607379} a^{9} - \frac{342946655718427339340633894669790311755565854921279464904247822624432017456109763868}{3859069685077936510085171762237580326366792124652933777355965474659259392867192607379} a^{8} - \frac{111997653250736830131137271281099708959861295221550020839461526671721756324052461681}{3859069685077936510085171762237580326366792124652933777355965474659259392867192607379} a^{7} - \frac{27254136286129035523754816160170332621789625286828351623686984949542058581522384136}{133071368450963327933971440077157942288510073263894268184688464643422737685075607151} a^{6} + \frac{37064517820711765199395196351152248378097143655305468035960516002023566060400308062}{133071368450963327933971440077157942288510073263894268184688464643422737685075607151} a^{5} + \frac{38713324961866171035817820783205016406136715595897086565415150004479689138457301928}{133071368450963327933971440077157942288510073263894268184688464643422737685075607151} a^{4} + \frac{37807699143788139373209596128144933913406643321399919305305230545776135250483494692}{133071368450963327933971440077157942288510073263894268184688464643422737685075607151} a^{3} - \frac{18946858069518498447415253449821805709056598331084864209385859352078584992724104046}{133071368450963327933971440077157942288510073263894268184688464643422737685075607151} a^{2} - \frac{31372574039961763905866996882407854706666639868884211352461774353596772160963852458}{133071368450963327933971440077157942288510073263894268184688464643422737685075607151} a - \frac{28354140460701631228849196836220157906104653880192326237075818839795031661736200272}{133071368450963327933971440077157942288510073263894268184688464643422737685075607151}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59720218405800000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5103 |
| The 111 conjugacy class representatives for t21n39 are not computed |
| Character table for t21n39 is not computed |
Intermediate fields
| 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 8488201 | Data not computed | ||||||