Normalized defining polynomial
\( x^{21} - 2 x^{20} - 33 x^{19} + 54 x^{18} + 423 x^{17} - 578 x^{16} - 2679 x^{15} + 3163 x^{14} + 8911 x^{13} - 9346 x^{12} - 15389 x^{11} + 14554 x^{10} + 13283 x^{9} - 11462 x^{8} - 5756 x^{7} + 4570 x^{6} + 1193 x^{5} - 870 x^{4} - 105 x^{3} + 64 x^{2} + 4 x - 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10807233650734185519504921698416857=3^{3}\cdot 7^{14}\cdot 8388019^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 8388019$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{11} a^{18} - \frac{5}{11} a^{17} - \frac{2}{11} a^{16} + \frac{4}{11} a^{15} - \frac{5}{11} a^{14} + \frac{3}{11} a^{13} + \frac{1}{11} a^{12} - \frac{3}{11} a^{11} - \frac{1}{11} a^{10} + \frac{5}{11} a^{9} - \frac{4}{11} a^{8} + \frac{3}{11} a^{7} - \frac{2}{11} a^{6} + \frac{2}{11} a^{5} - \frac{2}{11} a^{4} - \frac{5}{11} a^{3} + \frac{3}{11} a^{2} + \frac{5}{11} a - \frac{5}{11}$, $\frac{1}{55} a^{19} + \frac{2}{55} a^{18} - \frac{4}{55} a^{17} - \frac{2}{11} a^{16} - \frac{21}{55} a^{15} + \frac{23}{55} a^{14} + \frac{2}{5} a^{13} + \frac{4}{55} a^{12} - \frac{1}{5} a^{11} + \frac{9}{55} a^{10} - \frac{24}{55} a^{9} - \frac{3}{55} a^{8} - \frac{3}{55} a^{7} - \frac{12}{55} a^{6} + \frac{23}{55} a^{5} + \frac{5}{11} a^{4} + \frac{1}{55} a^{3} + \frac{4}{55} a^{2} - \frac{3}{55} a - \frac{24}{55}$, $\frac{1}{329049939854663225} a^{20} - \frac{460999440738811}{65809987970932645} a^{19} + \frac{540020951614612}{29913630895878475} a^{18} + \frac{28683973585153833}{329049939854663225} a^{17} + \frac{73205944478625074}{329049939854663225} a^{16} - \frac{2598479787869401}{13161997594186529} a^{15} - \frac{99019479847791204}{329049939854663225} a^{14} - \frac{4341973471755166}{13161997594186529} a^{13} - \frac{132110828539382664}{329049939854663225} a^{12} + \frac{148581048302700096}{329049939854663225} a^{11} + \frac{30775646956122348}{329049939854663225} a^{10} + \frac{5185986127900272}{65809987970932645} a^{9} + \frac{78703653399164953}{329049939854663225} a^{8} + \frac{60616308765257204}{329049939854663225} a^{7} + \frac{12665104420437307}{329049939854663225} a^{6} + \frac{28852783585681749}{329049939854663225} a^{5} + \frac{10185792800201896}{329049939854663225} a^{4} - \frac{162416908714196383}{329049939854663225} a^{3} + \frac{130729875695492794}{329049939854663225} a^{2} + \frac{64644924925164082}{329049939854663225} a - \frac{71913747407602867}{329049939854663225}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16439548502.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15120 |
| The 45 conjugacy class representatives for t21n56 |
| Character table for t21n56 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.7.25164057.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | $15{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | $21$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{9}$ | $15{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | $15{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 8388019 | Data not computed | ||||||