Properties

Label 21.21.1068474701...8961.2
Degree $21$
Signature $[21, 0]$
Discriminant $3^{28}\cdot 43^{20}$
Root discriminant $155.54$
Ramified primes $3, 43$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group $C_{21}$ (as 21T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![521117, -12075690, 27998289, 261995044, 334614390, -148287951, -440981770, -64709754, 202286448, 64742219, -43218999, -17868564, 4785298, 2373600, -279414, -169635, 7998, 6579, -86, -129, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 129*x^19 - 86*x^18 + 6579*x^17 + 7998*x^16 - 169635*x^15 - 279414*x^14 + 2373600*x^13 + 4785298*x^12 - 17868564*x^11 - 43218999*x^10 + 64742219*x^9 + 202286448*x^8 - 64709754*x^7 - 440981770*x^6 - 148287951*x^5 + 334614390*x^4 + 261995044*x^3 + 27998289*x^2 - 12075690*x + 521117)
 
gp: K = bnfinit(x^21 - 129*x^19 - 86*x^18 + 6579*x^17 + 7998*x^16 - 169635*x^15 - 279414*x^14 + 2373600*x^13 + 4785298*x^12 - 17868564*x^11 - 43218999*x^10 + 64742219*x^9 + 202286448*x^8 - 64709754*x^7 - 440981770*x^6 - 148287951*x^5 + 334614390*x^4 + 261995044*x^3 + 27998289*x^2 - 12075690*x + 521117, 1)
 

Normalized defining polynomial

\( x^{21} - 129 x^{19} - 86 x^{18} + 6579 x^{17} + 7998 x^{16} - 169635 x^{15} - 279414 x^{14} + 2373600 x^{13} + 4785298 x^{12} - 17868564 x^{11} - 43218999 x^{10} + 64742219 x^{9} + 202286448 x^{8} - 64709754 x^{7} - 440981770 x^{6} - 148287951 x^{5} + 334614390 x^{4} + 261995044 x^{3} + 27998289 x^{2} - 12075690 x + 521117 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $21$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[21, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(10684747015052975538074582285998174444374188961=3^{28}\cdot 43^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $155.54$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(387=3^{2}\cdot 43\)
Dirichlet character group:    $\lbrace$$\chi_{387}(64,·)$, $\chi_{387}(1,·)$, $\chi_{387}(67,·)$, $\chi_{387}(262,·)$, $\chi_{387}(139,·)$, $\chi_{387}(142,·)$, $\chi_{387}(79,·)$, $\chi_{387}(145,·)$, $\chi_{387}(25,·)$, $\chi_{387}(31,·)$, $\chi_{387}(226,·)$, $\chi_{387}(187,·)$, $\chi_{387}(358,·)$, $\chi_{387}(40,·)$, $\chi_{387}(238,·)$, $\chi_{387}(49,·)$, $\chi_{387}(52,·)$, $\chi_{387}(379,·)$, $\chi_{387}(232,·)$, $\chi_{387}(382,·)$, $\chi_{387}(127,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7} a^{15} + \frac{1}{7} a^{13} + \frac{2}{7} a^{12} + \frac{2}{7} a^{10} - \frac{1}{7} a^{9} + \frac{3}{7} a^{5} - \frac{2}{7} a^{4} + \frac{3}{7} a^{3} - \frac{3}{7} a^{2} - \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{16} + \frac{1}{7} a^{14} + \frac{2}{7} a^{13} + \frac{2}{7} a^{11} - \frac{1}{7} a^{10} + \frac{3}{7} a^{6} - \frac{2}{7} a^{5} + \frac{3}{7} a^{4} - \frac{3}{7} a^{3} - \frac{2}{7} a^{2} + \frac{1}{7} a$, $\frac{1}{7} a^{17} + \frac{2}{7} a^{14} - \frac{1}{7} a^{13} - \frac{1}{7} a^{11} - \frac{2}{7} a^{10} + \frac{1}{7} a^{9} + \frac{3}{7} a^{7} - \frac{2}{7} a^{6} - \frac{1}{7} a^{4} + \frac{2}{7} a^{3} - \frac{3}{7} a^{2} + \frac{2}{7} a - \frac{1}{7}$, $\frac{1}{7} a^{18} - \frac{1}{7} a^{14} - \frac{2}{7} a^{13} + \frac{2}{7} a^{12} - \frac{2}{7} a^{11} - \frac{3}{7} a^{10} + \frac{2}{7} a^{9} + \frac{3}{7} a^{8} - \frac{2}{7} a^{7} - \frac{1}{7} a^{4} - \frac{2}{7} a^{3} + \frac{1}{7} a^{2} + \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{19} - \frac{2}{7} a^{14} + \frac{3}{7} a^{13} - \frac{3}{7} a^{11} - \frac{3}{7} a^{10} + \frac{2}{7} a^{9} - \frac{2}{7} a^{8} + \frac{2}{7} a^{5} + \frac{3}{7} a^{4} - \frac{3}{7} a^{3} + \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{13398628643109915520954804957967623005214200661192130028304530679292992403} a^{20} - \frac{725318113030508913271680559498032886294292418677324233973568053960013004}{13398628643109915520954804957967623005214200661192130028304530679292992403} a^{19} - \frac{550947092863307786557329075646818584631477421980763191100391648001133327}{13398628643109915520954804957967623005214200661192130028304530679292992403} a^{18} + \frac{471155410924866464068681801091702997570133849700696323469573518512803797}{13398628643109915520954804957967623005214200661192130028304530679292992403} a^{17} + \frac{804086825923226543520671745416269695649275108329378586728877754992874169}{13398628643109915520954804957967623005214200661192130028304530679292992403} a^{16} - \frac{790134731297429252699332755282720616290689059430210699174197875700029511}{13398628643109915520954804957967623005214200661192130028304530679292992403} a^{15} - \frac{5859928259965579715654775003554286863250700745416975146554830676930683216}{13398628643109915520954804957967623005214200661192130028304530679292992403} a^{14} - \frac{2408470915859637426576300836755412839474989710816556233355859576359656032}{13398628643109915520954804957967623005214200661192130028304530679292992403} a^{13} - \frac{1739744175450886914652434421481287417606078641786809908959131253014521743}{13398628643109915520954804957967623005214200661192130028304530679292992403} a^{12} + \frac{275039371380554169349139996088942144101120808833198207942103194180231523}{13398628643109915520954804957967623005214200661192130028304530679292992403} a^{11} + \frac{2730493003279429030300279922787726605504179777637520240687732504721603798}{13398628643109915520954804957967623005214200661192130028304530679292992403} a^{10} - \frac{6558175412487845427467099008550936174605317836944807775422977380351909414}{13398628643109915520954804957967623005214200661192130028304530679292992403} a^{9} - \frac{4024522073888009488804487397723709598885640909776983708372368918794673692}{13398628643109915520954804957967623005214200661192130028304530679292992403} a^{8} + \frac{1592575452622060302950790270567075744825371088207591002035658330677939633}{13398628643109915520954804957967623005214200661192130028304530679292992403} a^{7} + \frac{4970060045494866819292610560724456651827064538345582585242974328932733110}{13398628643109915520954804957967623005214200661192130028304530679292992403} a^{6} - \frac{4282684481898125964109848182298552739685248967212730338621031644267610910}{13398628643109915520954804957967623005214200661192130028304530679292992403} a^{5} + \frac{4870747391597768489183649055421593694372905342270590348216889337950751391}{13398628643109915520954804957967623005214200661192130028304530679292992403} a^{4} + \frac{1437508674214494204450003619712143597393099279393075238287490661613057911}{13398628643109915520954804957967623005214200661192130028304530679292992403} a^{3} + \frac{4834886979826386334176000848822485645141395169849055437835497807648968124}{13398628643109915520954804957967623005214200661192130028304530679292992403} a^{2} - \frac{810197072423912418658117873303010438511504632247412700530000727482464715}{13398628643109915520954804957967623005214200661192130028304530679292992403} a - \frac{3572664494625688782422495082180250313422776297241945720748673129953}{1105588632982087261403977634950707402031042219753455733006397448576037}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $20$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3551271732999900.0 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{21}$ (as 21T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 21
The 21 conjugacy class representatives for $C_{21}$
Character table for $C_{21}$ is not computed

Intermediate fields

3.3.149769.2, 7.7.6321363049.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $21$ R $21$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{7}$ $21$ ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ $21$ $21$ $21$ $21$ $21$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ $21$ R $21$ $21$ $21$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
43Data not computed