Normalized defining polynomial
\( x^{21} - 129 x^{19} - 86 x^{18} + 6579 x^{17} + 7998 x^{16} - 169635 x^{15} - 282897 x^{14} + 2351541 x^{13} + 4822837 x^{12} - 17262522 x^{11} - 42117210 x^{10} + 60860609 x^{9} + 187574256 x^{8} - 66235308 x^{7} - 399918748 x^{6} - 118626723 x^{5} + 303277839 x^{4} + 245278579 x^{3} + 53399808 x^{2} - 44247 x - 722701 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10684747015052975538074582285998174444374188961=3^{28}\cdot 43^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $155.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(387=3^{2}\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{387}(64,·)$, $\chi_{387}(1,·)$, $\chi_{387}(196,·)$, $\chi_{387}(262,·)$, $\chi_{387}(145,·)$, $\chi_{387}(268,·)$, $\chi_{387}(13,·)$, $\chi_{387}(337,·)$, $\chi_{387}(283,·)$, $\chi_{387}(160,·)$, $\chi_{387}(226,·)$, $\chi_{387}(229,·)$, $\chi_{387}(103,·)$, $\chi_{387}(169,·)$, $\chi_{387}(367,·)$, $\chi_{387}(178,·)$, $\chi_{387}(310,·)$, $\chi_{387}(58,·)$, $\chi_{387}(379,·)$, $\chi_{387}(124,·)$, $\chi_{387}(127,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{2}{7} a^{5} - \frac{3}{7} a^{4} - \frac{1}{7} a^{3} + \frac{2}{7} a^{2} + \frac{3}{7} a$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{4}$, $\frac{1}{7} a^{11} - \frac{1}{7} a^{5}$, $\frac{1}{49} a^{12} + \frac{3}{49} a^{11} - \frac{2}{49} a^{10} + \frac{3}{49} a^{9} + \frac{3}{49} a^{8} - \frac{3}{49} a^{7} - \frac{2}{49} a^{6} - \frac{22}{49} a^{5} - \frac{16}{49} a^{4} - \frac{2}{49} a^{3} + \frac{16}{49} a^{2} + \frac{3}{7} a$, $\frac{1}{49} a^{13} + \frac{3}{49} a^{11} + \frac{2}{49} a^{10} + \frac{1}{49} a^{9} + \frac{2}{49} a^{8} - \frac{2}{49} a^{6} + \frac{8}{49} a^{5} + \frac{11}{49} a^{4} + \frac{1}{49} a^{3} - \frac{13}{49} a^{2} - \frac{2}{7} a$, $\frac{1}{49} a^{14} - \frac{2}{49} a^{8} + \frac{1}{49} a^{2}$, $\frac{1}{343} a^{15} + \frac{1}{343} a^{14} + \frac{3}{343} a^{13} - \frac{2}{343} a^{12} + \frac{24}{343} a^{11} - \frac{11}{343} a^{10} - \frac{5}{343} a^{9} - \frac{9}{343} a^{8} - \frac{1}{343} a^{7} - \frac{9}{343} a^{6} - \frac{135}{343} a^{5} - \frac{89}{343} a^{4} + \frac{162}{343} a^{3} + \frac{3}{49} a^{2} - \frac{3}{7} a$, $\frac{1}{27097} a^{16} + \frac{10}{27097} a^{15} - \frac{142}{27097} a^{14} + \frac{193}{27097} a^{13} + \frac{188}{27097} a^{12} - \frac{1734}{27097} a^{11} + \frac{358}{27097} a^{10} - \frac{1202}{27097} a^{9} - \frac{117}{27097} a^{8} + \frac{1788}{27097} a^{7} - \frac{1553}{27097} a^{6} + \frac{3043}{27097} a^{5} - \frac{968}{27097} a^{4} - \frac{5136}{27097} a^{3} + \frac{375}{3871} a^{2} + \frac{31}{79} a + \frac{3}{79}$, $\frac{1}{189679} a^{17} - \frac{1}{189679} a^{16} + \frac{64}{189679} a^{15} - \frac{141}{189679} a^{14} + \frac{254}{27097} a^{13} - \frac{10}{189679} a^{12} + \frac{2131}{189679} a^{11} - \frac{8063}{189679} a^{10} + \frac{465}{189679} a^{9} - \frac{1626}{27097} a^{8} - \frac{7712}{189679} a^{7} - \frac{8709}{189679} a^{6} + \frac{52854}{189679} a^{5} - \frac{59110}{189679} a^{4} + \frac{4936}{27097} a^{3} + \frac{1219}{3871} a^{2} - \frac{22}{553} a - \frac{16}{79}$, $\frac{1}{189679} a^{18} - \frac{22}{27097} a^{15} - \frac{477}{189679} a^{14} - \frac{990}{189679} a^{13} + \frac{16}{3871} a^{12} + \frac{12065}{189679} a^{11} + \frac{10217}{189679} a^{10} - \frac{3763}{189679} a^{9} + \frac{2655}{189679} a^{8} - \frac{1875}{189679} a^{7} - \frac{10091}{189679} a^{6} - \frac{86812}{189679} a^{5} - \frac{32146}{189679} a^{4} - \frac{7141}{27097} a^{3} - \frac{19}{3871} a^{2} - \frac{33}{553} a + \frac{36}{79}$, $\frac{1}{1327753} a^{19} - \frac{2}{1327753} a^{18} - \frac{1}{189679} a^{16} + \frac{1301}{1327753} a^{15} + \frac{10058}{1327753} a^{14} + \frac{167}{1327753} a^{13} - \frac{8319}{1327753} a^{12} - \frac{67519}{1327753} a^{11} + \frac{59397}{1327753} a^{10} - \frac{65867}{1327753} a^{9} - \frac{43739}{1327753} a^{8} - \frac{10604}{1327753} a^{7} - \frac{58790}{1327753} a^{6} - \frac{181530}{1327753} a^{5} + \frac{30720}{1327753} a^{4} - \frac{80988}{189679} a^{3} - \frac{4168}{27097} a^{2} + \frac{1873}{3871} a + \frac{10}{79}$, $\frac{1}{2369528466750490297706640339087490303086563} a^{20} + \frac{187635700341608847860211986415408536}{2369528466750490297706640339087490303086563} a^{19} - \frac{4114514331518511726591231236148741238}{2369528466750490297706640339087490303086563} a^{18} - \frac{709483406605195393435380955666511692}{338504066678641471100948619869641471869509} a^{17} + \frac{7062687142415008828303132716191063202}{2369528466750490297706640339087490303086563} a^{16} + \frac{423003020190851734363929465989428383592}{2369528466750490297706640339087490303086563} a^{15} + \frac{15762645222090024707091597581241960887519}{2369528466750490297706640339087490303086563} a^{14} + \frac{5469384112249244619619175817434251490841}{2369528466750490297706640339087490303086563} a^{13} - \frac{189180626439648812056506769467631670369}{48357723811234495871564088552805924552787} a^{12} - \frac{138342795819473175192697124546078861566405}{2369528466750490297706640339087490303086563} a^{11} - \frac{42186893604365967878165381934483873655355}{2369528466750490297706640339087490303086563} a^{10} - \frac{24171982929891848003024067614310544271505}{338504066678641471100948619869641471869509} a^{9} - \frac{144066708357679178683880720092579307264352}{2369528466750490297706640339087490303086563} a^{8} - \frac{94296397342804394791480072863360034641347}{2369528466750490297706640339087490303086563} a^{7} + \frac{58534048552012014088226564643026138810966}{2369528466750490297706640339087490303086563} a^{6} - \frac{480159969261715664240040063948969838515392}{2369528466750490297706640339087490303086563} a^{5} - \frac{27770811068783842302685790064709167084283}{2369528466750490297706640339087490303086563} a^{4} + \frac{100661173986988531418269801567132154324113}{338504066678641471100948619869641471869509} a^{3} - \frac{19187571304531922853157326405467227015737}{48357723811234495871564088552805924552787} a^{2} + \frac{3414544716639378561862488458107734653634}{6908246258747785124509155507543703507541} a - \frac{39427297443977722862373618949928905876}{140984617525465002541003173623340887909}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104145016649537420 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.149769.1, 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{21}$ | $21$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | $21$ | R | $21$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 43 | Data not computed | ||||||