Normalized defining polynomial
\( x^{21} - 5 x^{20} - 246 x^{19} + 839 x^{18} + 27034 x^{17} - 43242 x^{16} - 1698184 x^{15} - 440054 x^{14} + 63497079 x^{13} + 134175966 x^{12} - 1282886700 x^{11} - 5581319611 x^{10} + 7460683338 x^{9} + 93358444781 x^{8} + 171411106892 x^{7} - 330750438735 x^{6} - 2173940217037 x^{5} - 4832279474773 x^{4} - 6069436921399 x^{3} - 4566926791152 x^{2} - 1931184605132 x - 354904851136 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(104207437796082958141427273984144296364513114703541496909824=2^{12}\cdot 19^{2}\cdot 149^{6}\cdot 211^{6}\cdot 709^{2}\cdot 12049343287^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $646.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 149, 211, 709, 12049343287$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{81101458423689141680675401797321060116464} a^{20} - \frac{4819627235227809170571039072001951935491}{81101458423689141680675401797321060116464} a^{19} - \frac{1459563702426949702456838853311013389093}{20275364605922285420168850449330265029116} a^{18} + \frac{3583424488027905087031422029085523285887}{81101458423689141680675401797321060116464} a^{17} - \frac{786330662176077966440380884956219343973}{10137682302961142710084425224665132514558} a^{16} - \frac{309505127111412768735529033436834007121}{40550729211844570840337700898660530058232} a^{15} - \frac{9092211299707519255354066007307227909277}{20275364605922285420168850449330265029116} a^{14} + \frac{478275295689158443891360071558239889133}{40550729211844570840337700898660530058232} a^{13} - \frac{33275374094205697757408117341462441076013}{81101458423689141680675401797321060116464} a^{12} - \frac{5169955670749663854672670569610288753489}{20275364605922285420168850449330265029116} a^{11} - \frac{825585354143281939914430146789980255489}{20275364605922285420168850449330265029116} a^{10} - \frac{17058998303646197124967934939812058372627}{81101458423689141680675401797321060116464} a^{9} - \frac{3026048431885250278131339258844094771495}{20275364605922285420168850449330265029116} a^{8} + \frac{7562390795767198889844030587977666359389}{81101458423689141680675401797321060116464} a^{7} - \frac{17943898922812825405020600292641445331441}{40550729211844570840337700898660530058232} a^{6} + \frac{16729714372288834536966359746966654547069}{81101458423689141680675401797321060116464} a^{5} - \frac{34379904538050637541925490591768107055011}{81101458423689141680675401797321060116464} a^{4} + \frac{16942275546409967368522703405217936874237}{81101458423689141680675401797321060116464} a^{3} - \frac{21704153821458613108095299317295824501597}{81101458423689141680675401797321060116464} a^{2} + \frac{3804876841883143717503637439986642621127}{40550729211844570840337700898660530058232} a + \frac{808636751169429159002917650850089639809}{5068841151480571355042212612332566257279}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 220659113009000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 352719360 |
| The 150 conjugacy class representatives for t21n148 are not computed |
| Character table for t21n148 is not computed |
Intermediate fields
| 7.7.988410721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | $21$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | $15{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.14 | $x^{10} + 5 x^{8} - 50 x^{6} - 58 x^{4} + 49 x^{2} + 21$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.8.0.1 | $x^{8} - x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 149 | Data not computed | ||||||
| 211 | Data not computed | ||||||
| 709 | Data not computed | ||||||
| 12049343287 | Data not computed | ||||||