Normalized defining polynomial
\( x^{21} - 7 x^{20} - 272 x^{19} + 1288 x^{18} + 31411 x^{17} - 79101 x^{16} - 1977903 x^{15} + 1081747 x^{14} + 72271854 x^{13} + 83688934 x^{12} - 1473025353 x^{11} - 4114370323 x^{10} + 13215711831 x^{9} + 71791433797 x^{8} + 25816033011 x^{7} - 438197404399 x^{6} - 1026938609748 x^{5} - 471523044618 x^{4} + 1452614355659 x^{3} + 2619148572733 x^{2} + 1750594810270 x + 436671618380 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(103824735093241618527929042484657707192669185678662729728000=2^{18}\cdot 5^{3}\cdot 7^{2}\cdot 97^{2}\cdot 7607^{6}\cdot 188328230263^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $646.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 97, 7607, 188328230263$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{170094016392760441183528326647892184709920881999375568180664754417141149455535835113117030} a^{20} - \frac{4192466330966927436537619117985822578616978331118732110979618993617611378261014461656979}{170094016392760441183528326647892184709920881999375568180664754417141149455535835113117030} a^{19} + \frac{15209819513529604573360720302973458784303219142896956253329122156827574106918358261178398}{85047008196380220591764163323946092354960440999687784090332377208570574727767917556558515} a^{18} + \frac{26555957336362103045938814625570412202535830230458073299650454990309753054887704142315133}{85047008196380220591764163323946092354960440999687784090332377208570574727767917556558515} a^{17} + \frac{20318477348529884868019459976764650975377895903969052592940644670469777877078011156374739}{170094016392760441183528326647892184709920881999375568180664754417141149455535835113117030} a^{16} + \frac{17262881682090205480620788911763708970266922759070385719738908820265161648078082785925761}{170094016392760441183528326647892184709920881999375568180664754417141149455535835113117030} a^{15} + \frac{4664440524436785830273191647839065234427350908658298309381664699798430438992436891811825}{34018803278552088236705665329578436941984176399875113636132950883428229891107167022623406} a^{14} + \frac{84874771937799703697335569849546411906331594061068353688480545790663693765222239835590037}{170094016392760441183528326647892184709920881999375568180664754417141149455535835113117030} a^{13} - \frac{3568257875208494501968308768583538870434581823747880850610066347332355356456135351980617}{17009401639276044118352832664789218470992088199937556818066475441714114945553583511311703} a^{12} + \frac{11092462957740600413908018649817632134618895808256092879745731657466020277330403337498832}{85047008196380220591764163323946092354960440999687784090332377208570574727767917556558515} a^{11} - \frac{30563491760993413166735597939398259335099066815275300514984238741486771053150864832938151}{170094016392760441183528326647892184709920881999375568180664754417141149455535835113117030} a^{10} + \frac{13833911236305470638361864280708283817179581359203455849170368708544995302928549476194449}{170094016392760441183528326647892184709920881999375568180664754417141149455535835113117030} a^{9} + \frac{8920829269099986342763536643096758696945225358720844841407364136111599415217587648144503}{170094016392760441183528326647892184709920881999375568180664754417141149455535835113117030} a^{8} - \frac{2756390381495485711651870594298385890838077871348181244168499513261555230213348351555819}{170094016392760441183528326647892184709920881999375568180664754417141149455535835113117030} a^{7} + \frac{11931794989972941248837944586230171117447277135090133494428817945658338621542002720102589}{170094016392760441183528326647892184709920881999375568180664754417141149455535835113117030} a^{6} + \frac{36875136432589513070364958380605292678984069135147074051994336819631225490636922990750763}{170094016392760441183528326647892184709920881999375568180664754417141149455535835113117030} a^{5} + \frac{37134073229357786733918069078727907534792919479900437869929417693136762942198344366589718}{85047008196380220591764163323946092354960440999687784090332377208570574727767917556558515} a^{4} - \frac{1272287823132772562446416483490085092361559063002395879451466568831767368287524616293637}{17009401639276044118352832664789218470992088199937556818066475441714114945553583511311703} a^{3} - \frac{2021377508891705761274720994841410081520865945519224883802543308885826410263982600540311}{170094016392760441183528326647892184709920881999375568180664754417141149455535835113117030} a^{2} - \frac{2008625224316229681883554379323257005373027755994252819236807662165565250409594422220375}{34018803278552088236705665329578436941984176399875113636132950883428229891107167022623406} a - \frac{3511722318254849682147506484728314572197402299042402711163803984260171418590680348942633}{17009401639276044118352832664789218470992088199937556818066475441714114945553583511311703}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 122683105662000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5878656 |
| The 120 conjugacy class representatives for t21n136 are not computed |
| Character table for t21n136 is not computed |
Intermediate fields
| 7.7.3703452736.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | R | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.12.12.11 | $x^{12} - 6 x^{10} - 73 x^{8} + 140 x^{6} + 79 x^{4} - 6 x^{2} + 57$ | $2$ | $6$ | $12$ | $A_4 \times C_2$ | $[2, 2]^{6}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.12.0.1 | $x^{12} + 3 x^{2} - 2 x + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $97$ | 97.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 97.3.2.2 | $x^{3} + 485$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 97.6.0.1 | $x^{6} - x + 10$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 97.9.0.1 | $x^{9} - 2 x + 7$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 7607 | Data not computed | ||||||
| 188328230263 | Data not computed | ||||||