Normalized defining polynomial
\( x^{21} - 273 x^{19} - 574 x^{18} + 28462 x^{17} + 108276 x^{16} - 1365336 x^{15} - 7387297 x^{14} + 29273335 x^{13} + 236399408 x^{12} - 136995908 x^{11} - 3677713942 x^{10} - 4292878786 x^{9} + 24629746463 x^{8} + 60756994317 x^{7} - 36501637424 x^{6} - 239196844705 x^{5} - 155322145538 x^{4} + 236480949201 x^{3} + 369969955635 x^{2} + 170427535873 x + 24521880853 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(103818783062189717738091671292152377422379176428329=7^{38}\cdot 19^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $240.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(931=7^{2}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{931}(1,·)$, $\chi_{931}(900,·)$, $\chi_{931}(134,·)$, $\chi_{931}(267,·)$, $\chi_{931}(400,·)$, $\chi_{931}(533,·)$, $\chi_{931}(666,·)$, $\chi_{931}(30,·)$, $\chi_{931}(799,·)$, $\chi_{931}(163,·)$, $\chi_{931}(102,·)$, $\chi_{931}(296,·)$, $\chi_{931}(235,·)$, $\chi_{931}(429,·)$, $\chi_{931}(368,·)$, $\chi_{931}(562,·)$, $\chi_{931}(501,·)$, $\chi_{931}(695,·)$, $\chi_{931}(634,·)$, $\chi_{931}(828,·)$, $\chi_{931}(767,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{19} a^{18} + \frac{8}{19} a^{17} + \frac{4}{19} a^{16} - \frac{9}{19} a^{15} + \frac{6}{19} a^{13} + \frac{8}{19} a^{12} - \frac{9}{19} a^{11} - \frac{1}{19} a^{10} - \frac{5}{19} a^{9} + \frac{8}{19} a^{8} + \frac{5}{19} a^{7} + \frac{4}{19} a^{6} + \frac{2}{19} a^{5} - \frac{9}{19} a^{4} + \frac{6}{19} a^{3} + \frac{6}{19} a^{2} + \frac{6}{19} a + \frac{8}{19}$, $\frac{1}{2040956839} a^{19} + \frac{46717285}{2040956839} a^{18} - \frac{952954412}{2040956839} a^{17} - \frac{401982188}{2040956839} a^{16} + \frac{105929323}{2040956839} a^{15} + \frac{879552091}{2040956839} a^{14} + \frac{988227083}{2040956839} a^{13} - \frac{451830014}{2040956839} a^{12} - \frac{146695039}{2040956839} a^{11} + \frac{297287503}{2040956839} a^{10} + \frac{400953640}{2040956839} a^{9} + \frac{680907440}{2040956839} a^{8} + \frac{2990423}{6965723} a^{7} + \frac{974307257}{2040956839} a^{6} + \frac{899090215}{2040956839} a^{5} - \frac{982781938}{2040956839} a^{4} + \frac{105530667}{2040956839} a^{3} - \frac{179120189}{2040956839} a^{2} + \frac{139674087}{2040956839} a + \frac{89443629}{2040956839}$, $\frac{1}{28985389711145518678161852479440387639792103548187423687405038420326329752521139567832545561} a^{20} + \frac{4718441280581405720687833744176397033971707996427036808140367515685866539956157652}{28985389711145518678161852479440387639792103548187423687405038420326329752521139567832545561} a^{19} - \frac{85128703901632655512501482727215833204617990700648583650859702431131191165151865208565848}{28985389711145518678161852479440387639792103548187423687405038420326329752521139567832545561} a^{18} - \frac{11738043037766626617474463040767519360745645648754314862418562839920774937073715441756227114}{28985389711145518678161852479440387639792103548187423687405038420326329752521139567832545561} a^{17} - \frac{8645884545066782823326469969487607658186292872602177776747634735733747742529950364096789173}{28985389711145518678161852479440387639792103548187423687405038420326329752521139567832545561} a^{16} - \frac{7890190627888110856039757075794822232883506504991196587120962774378290322907620947872995953}{28985389711145518678161852479440387639792103548187423687405038420326329752521139567832545561} a^{15} + \frac{6948994011124113459705886082527122756244214621690244964125324902309790760753272167033029946}{28985389711145518678161852479440387639792103548187423687405038420326329752521139567832545561} a^{14} + \frac{8814547526088747992248256924821821793186188767805315360659696357231105432929483470129177715}{28985389711145518678161852479440387639792103548187423687405038420326329752521139567832545561} a^{13} + \frac{5718476987690329857892566824910348390372778529079738645421737841318196036766497579694219647}{28985389711145518678161852479440387639792103548187423687405038420326329752521139567832545561} a^{12} + \frac{7187376560238882113689005547911296461399943953063121999940660836082153908267673793144413730}{28985389711145518678161852479440387639792103548187423687405038420326329752521139567832545561} a^{11} - \frac{6171935420716614401835218973848246400315236732796305090238105383289874313617944748697605497}{28985389711145518678161852479440387639792103548187423687405038420326329752521139567832545561} a^{10} - \frac{8627013665433248296388476299504971656806978441362825245545510576132535776475539104378136047}{28985389711145518678161852479440387639792103548187423687405038420326329752521139567832545561} a^{9} + \frac{12190556011991120485938059509296844037743437778191552652837036242486894982221171718181915295}{28985389711145518678161852479440387639792103548187423687405038420326329752521139567832545561} a^{8} + \frac{9293133217073774219165601211479762788549064870592624981364252382923854797342557152182336477}{28985389711145518678161852479440387639792103548187423687405038420326329752521139567832545561} a^{7} + \frac{13667999833370444749985222092221346856796354284559895390708472418542632440164079216983626990}{28985389711145518678161852479440387639792103548187423687405038420326329752521139567832545561} a^{6} - \frac{7139232924741240083471412723567704544938557460207951236418369758335338879568504941923676807}{28985389711145518678161852479440387639792103548187423687405038420326329752521139567832545561} a^{5} - \frac{46325494098798745878049404112016512986800351877142205179399934726588685323120356327635211}{110210607266712998776280807906617443497308378510218341016749195514548782328977716987956447} a^{4} - \frac{4441914277079900546822813860186766677042489927624272829154277808123852206624565401925902806}{28985389711145518678161852479440387639792103548187423687405038420326329752521139567832545561} a^{3} + \frac{635783954324970389877930293614618694191133284970903443399070232495650455510236339587273764}{1525546826902395719903255393654757244199584397273022299337107285280333144869533661464870819} a^{2} + \frac{2895029751066536897738357256811185613516358243159706822341109828553350248804328988533696449}{28985389711145518678161852479440387639792103548187423687405038420326329752521139567832545561} a - \frac{9517634542189100726358805928377792756596655417056499623730496519596782646326003586979253054}{28985389711145518678161852479440387639792103548187423687405038420326329752521139567832545561}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 644113238376879900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.17689.1, 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | $21$ | R | $21$ | $21$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $19$ | 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |